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The formation of membrane tubes (or tethers), which is a crucial event in many biological processes,
is intrinsically a dynamic process. In this paper, we discuss both theoretically and experimentally the
dynamical laws that govern extrusion and retraction of tubes extracted from lipid vesicles at high speed
and under strong flows. A detailed description of the tether shape provides the first evidence that the
tension along the tube increases from the vesicle body to the tip of the tube, while the tube radius decreases.
As the pulling force is suppressed suddenly, the tube can relax only from the free end, and the velocity
of retraction is a direct measurement of the frozen tension along the tube. We also report experiments on
tethers pulled out either by mechanical point-forces or by hydrodynamic (electroosmosis-induced) flow,
and we show that the observed dynamical laws for retraction are in good quantitative agreement with our
theoretical predictions.

I. Introduction

A point-force acting on the fluid membrane of a living
cell or an artificial vesicle is known to give rise to the
extraction of thin bilayer tubes from the membrane.1 A
large variety of tether-pulling experiments have been
reported during the past decade using mechanical mi-
cropipet manipulation,2-4 optical tweezers,5 electrical
microelectrode manipulation,6,7 or growth of rigid biopoly-
merssuchasmicrotubules insidevesicles.8,9 Thepossibility
of obtaining calibrated tubes of diameters in the submi-
cronic range is found to be very promising in the fabrication
of micro/nanofluidic devices or nanocircuits and networks
used as integrated cellular biosensors.6,7,10 The statics of
these tubular structures is now well understood from a
theoretical point of view,2 and all experiments taken
together provided accurate and useful values of the
mechanical properties of bilayer membranes11,12 as well
as new insight into cell membrane elasticity5 and into
membrane-cytoskeleton coupling.13 More recently, the
phase diagram of vesicle deformation induced by axial
load and the initial formation of fluid nanotubes have
been investigated theoretically by various groups.14-16

Tubular networks have also been observed in living cells.

Some biological membranes (such as the endoplasmic
reticulum, the Golgi apparatus, or the inner mitochondrial
membrane) often exhibit hairy structures involved in the
intracellular transport.17,18 These narrow ramifications
are pulled by kinesin motor proteins, and their structure
is highly dynamic.19 However, the dynamical laws for
growth and retraction of these intrinsically dynamic tubes
have often been overlooked.

In the present paper, our purpose is to specifically study
the dynamical features of fluid bilayer filaments extracted
from giant vesicles. To our knowledge, the unique work
dealing with the dynamics of tether extrusion is due to
Evans et al.2 First, we shall present a theoretical
background of tube formation and a reminder of the Evans
results. Then, we will provide detailed theoretical predic-
tions about the extrusion, shape, and retraction of tubes
when they are pulled out either by point-forces (section
III) or by an overall hydrodynamic flow (section IV).
Finally, in section V, we describe and analyze experimental
observations of retracting tubes. Two different situations
are considered. Extrusion of tethers was achieved either
by mechanical micropipet pulling or by an electroosmotic
flow. We demonstrate that the temporal shrinkage of tube
length (when the external force is suppressed) strongly
depends on the way tubes were formed, and we show that
observed retraction dynamics are in good agreement with
our theoretical predictions.

II. Theoretical Background

1. Static Properties of Fluid Tubes. The formation
of tubes when a vesicle is stretched can be understood as
a first-order transition at a certain threshold force fc.15,16

The following, simple argument shows this. Let us assume
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that the tension σ of the vesicle is constant and that the
volume Ω is fixed. When it is stretched by two opposite
distributed forces in a “Gedanken” experiment (Figure 1),
we assume that the vesicle is elongated. The shape is
ellipsoidal at small forces. If L is the length along the long
axis and R0 the initial radius, the force is proportional to
L - R0 (f ≈ σ(L - R0)). Under strong forces, the shape
becomes a “cigar” of length L and radius r. Neglecting end
cap effects (r/L , 1), the energy of the cylindrical vesicle
is the sum of the curvature and surface energies

where K is the bending rigidity (K ≈ 4 × 10-20 J).
With the conservation of the volume

we can eliminate r and calculate the force f ) ∂F/∂L from
eq 1.

We show in Figure 1 a schematic plot of the force versus
the elongationL: in the case of liquid droplets, the decrease
of f versus L is related to the Rayleigh instability of a
liquid cylinder. Here, by contrast, for f ) fc, we have
coexistence between a quasispherical vesicle and a thin
tube. The pressure in the two compartments is equal. The
pressure inside the sphere is P ) 2σ/R0 ≈ 0. Inside the
tube, the pressure deduced from eq 1 is

The radius of the tube at coexistence, called the critical
radius rc, is then

The critical force fc is deduced from eq 3, with r ) rc

At this point, it is well to make a few remarks before
continuing further:

(1) The capillary force f on the tube is not 2πσr, but πσr
because one must differentiate the energy (eq 1) at
constant volume

(2) The shape of the vesicle coexisting with the filament
is nearly the shape of a liquid droplet deposited on a fiber
of radius 2rc, as pointed out by several groups.14,16,20 In
the region where surface tension dominates, the shape of
the vesicles (given by the profile z(x)) can be derived from
the conservation of the force f ) 2πσz cos θ, where θ is
related to the slope (tan θ ) dz/dx). The resulting profile
z ) z0 cosh(x/z0) corresponds to the profile of a meniscus
of a liquid rising on a fiber of radius z0. For f ) fc, the
comparison of eq 6 and the one on the conservation of the
force shows that z0 ) 2rc. A crossover region of extension
rc relates the vesicle to the tube. In this region, both the
surface energy and the membrane bending play a role.

(3) There is a strong analogy between the stretching of
vesicles and the stretching of a polymer chain in a bad
solvent. The polymer globule is characterized by a surface
tension. When it is stretched by a force f, Zhulina and
Halperin21 have predicted a first-order coil-stretch tran-
sition: the globule coexists with an elongated polymer
chain.

2. Dynamics: Pulling Force (Evans and Yeung).
The first paper on the dynamics of tether extrusion is due
to Evans and Yeung2 in the limit where the tube’s radius
r is uniform (r ) rc). They emphasize the role of the slippage
at the birth of the tube and of the dissymmetry induced
during extrusion, with the outer layer losing more
phospholipids than the inner layer when a tube is
extracted. But for the long tubes studied here (in the range
of∼100 µm to millimeters), the dominant friction is against
the solvent and the tension along the tube is no longer
uniform. Let us recall the main outcomes of the Evans
and Yeung studies. A slightly dehydrated vesicle is first
pressurized into spherical form by micropipet suction, as
showninFigure2.The“manchon” inside thepipetprovides
a reservoir of lipids. The vesicle is therefore maintained
at a constant tension σ0. Second, a small adhesive bead
is linked to the membrane and is moved at velocity U. The
bead is bound to a force transducer, and the pulling force
f is measured as a function of the velocity U of extraction.

They study the slow extrusion of short tubes assuming
that they are uniform, with a radius rc given by eq 5. In
this limit, the pulling force f can be written as2

where fc is the static pulling force, the second term named
“extrusion force” describes the drag between the two
monolayers (surface viscosity ηs) pulled at different
velocities, and the third term is the restoring force opposing
the dissymmetry between the two lipid layers of the vesicle
induced by the formation of the tube of length L. These
forces are carefully derived in ref 2. A simple scaling
interpretation is given in Appendix A.

In the rest of this paper, we will only focus on very long
tethers (L ≈ hundred microns to millimeters) extruded at
high speed. In this case, the friction force along the tube
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Figure 1. Schematic plot of force f versus elongation L of a
vesicle of initial radius R0 and a constant tension σ. At small
forces, the vesicle has an ellipsoidal shape and the force is
proportional to L - R0. Under strong forces, the shape becomes
a “cigar” of length L and radius r. The force f decreases with
elongation L: this region is unstable and corresponds to the
Rayleigh instability of a cylindrical vesicle. At intermediate
force f ) f0 ) fc, we have a coexistence between a quasispherical
vesicle and a tether.
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(∼ηLL4 ) overcomes the Evans extrusion forces. It implies
L > ηs/η (of order 1 µm for water). This friction creates a
gradient of surface tension along the tube, and the tube
radius is no longer uniform.

III. Dynamics of Pull out by Point Forces
1. Structure of the Stretching Tube (Figure 2). The

tube is pulled at constant velocity U by a bead. The length
of the tube is L ) Ut at time t of extrusion. The friction
on the tube generates a gradient of surface tension σ(x).

We derive σ(x) and the profile of the tube r(x) from the
three following equations:

(i) We assume a quasistatic equilibrium. The pressure
inside the tube is uniform and equal to zero. Equation 4
leads to

(ii) The flow of lipids is conserved

where rm is the tip radius and U the (fixed) stretching
velocity.

(iii) The balance of mechanical and friction forces can
be written as

where úP is the friction coefficient per unit length for a
cylinder (length L, radius r) in a flow parallel to the
symmetry axis: úP ) 4πη/(ln(L/r) - 1/2).

With f/2π ) 3/4(K/r) + 1/2σr ) K/r, eqs 9 and 10 lead to

The structure of the stretching tube is specified by those
three equations, and the two boundary conditions U(L) )
U at the extremity and σ(0) ) σ0, that is, r(0) ) rc, at the
birth of the tube in connection with the “mother” vesicle.

The integral of eq 11, with the boundary condition r(0)
) rc ) (K/2σ)1/2 gives

where 2̃ is a numerical coefficient including the hydro-
dynamic interactions: 2̃ = 2/ln(L/rc) if the size of the
container (or experiment chamber), denoted d, is larger
than the length of the tube. In confined geometries, the
hydrodynamic interactions are screened and L is replaced
by d.

Equation 12 involves a characteristic length defined by
l2 ) K/2̃ηU. The radius of the tube rm at the tip is given
then by

where Lc ) l2/rc is the typical length of variation of the
radius (or forces).

With f ) 20 pN and U ) 100 µms-1, we find Lc ≈ 200
µm. When L , Lc, eq 13 gives rm ) rc, meaning that the
size of the tube is constant. When L . Lc, eq 13 leads to

Including all logarithmic corrections in the prefactor, eq
14 leads to rm ≈ K/ηUL.

In the limit L . Lc, the profile and the membrane tension
are given by

The radius of the tube decreases from rc to rm, while σ(x)
increases from σ0 (the vesicle tension) to σm ) K/2rm

2 at
the tip.

The force at this tip ft, directly deduced from eq 14

increases linearly with (ηUL), neglecting logarithmic
corrections.

Along the tube, the increase of f(x) is deduced from eq
15

Remark: If the force ft is maintained constant, eq 16
shows that L(t) increases with t1/2 (2̃ηLL4 ≈ ft, that is, L
≈ [(ft/η)t]1/2).

2. Tube Retraction. At t ) 0, we stop the motion of
the bead (radius Rb). The tube has a length L0. To calculate
the retraction L(t), we assume (and we checked in the
Appendix) that the tube can relax only from its free end.
This is called the “Albatros theorem” by polymer physicists’
“Ses ailes de géant l′empêchent de marcher”, Baudelaire
poem.22 A relaxation in the middle would imply a motion
of the whole tube and would be extremely slow. On the
other hand, the free end (here the bead) can collect the
tube very quickly.23,24 This explains why we state here

(22) Baudelaire, C. L’Albatros. In Les Fleurs du Mal; Spleen et idéal:
Paris, 1857.

(23) de Gennes, P. G. J. Chim. Phys. France 1967, 87, 962.

Figure 2. Extrusion of a tube (length L) from a vesicle. The
vesicle is maintained at constant stress σ0 by micropipet suction.
An adhesive bead (black dot) is linked to the membrane and
is moved at velocity U. Zoom of the profile r(x) of the tube during
extraction at constant velocity U by a bead. The friction on the
tube generates a gradient of surface tension σ(x) from rm, the
tip radius, to rc, the radius of the tube at the boundary between
the vesicle and the tube.
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that the tube is frozen in its initial conformation. We check
in the Appendix that the relaxation of the stress σx is
indeed very slow. We also neglect the viscous losses at the
tip: for example, for ultraviscous polymer extrusion, the
extraction force is large, but the accumulation of the
filament on the bead costs no energy. This can be seen
with a filament of honey falling on a piece of bread.25

The relaxation of the tube is then calculated by equating
the Stokes friction on the bead, moving at velocity L4 , to
the force f(x ) L(t))/2π ) K/r given by eq 17.

Notice that following the velocity of retraction leads to
a direct measure of f(x) and therefore of r(x). This eq 18
leads to two regimes of retraction:

(i) Retraction at Constant Velocity. If L0 , Lc and the
force f ≈ fc, the tube retracts at constant velocity Vc. This
is the case for tense vesicles (σ0 large) extruded at low
velocities U

The velocity increases with the vesicle tension σ0 as
σ0

1/2. The time of retraction is τret ) L0/Vc ≈ RbηrcL0/K and
decreases as σ0

-1/2. At the end, when the tube becomes
very short, the vesicle shape is a catenoı̈d of size l (l ≈ rc
ln(R0/rc)), which relaxes very fast with a characteristic
capillary time τcap (σ0/ητcap ≈ R0).

(ii) Retraction at Decreasing Velocity. On the other hand,
when L . Lc, the retraction velocity should decrease with

time from Vmax ) ft/6πηRb to Vc. Equation 18 with f(L(t))
) fce(L/Lc)(rm/rc) leads to

The retraction time (L(τret) ) 0) is given by

Equation 21 shows that the retraction time depends
weakly (logarithmically) upon the velocity of extrusion U.

IV. Vesicles under Flows
We study first the case of a vesicle attached by one

point on a solid substrate and submitted to a uniform flow
U. This situation can be realized experimentally by
electroosmosis in a charged glass capillary. An electric
field creates a plug flow, with a velocity V ≈ ε(Eê/η), where
ε is the dielectric constant and ê the surface potential. For
water, with E ≈ 100 V‚cm-1 and ê ≈ 100 mV, we get U
≈ 0.5 mm‚s-1.

We consider two cases: (1) unswollen vesicles, with zero
surface tension, and (2) swollen vesicles, with an initial
tension σ0.

1. Pull out from Floppy Vesicles (σ0 = 0) (Figure
3a). Our aim here is to estimate the critical flow Uc to
extrude a tube. We give a scaling description of the shape
of the vesicle, ignoring the exact numerical coefficient.
We find two regimes:

(i) Stationary Regime. Just below the critical current,
the vesicle is stationary and composed of two parts, named
here the flower and the stem.

The flower is the quasispherical part (size lf) dominated
by surface tension induced by the flow. The balance of

(24) Buguin, A.; Brochard-Wyart, F. Macromolecules 1996, 29, 4937-
4943.

(25) Skorobogatiy, M.; Mahadevan, L. Europhys. Lett. 2000, 52, 532-
538.

Figure 3. Shapes of vesicles (initial radius R0) attached by one point A on a solid substrate and submitted to a uniform flow U
in two cases: (a) unwinding of floppy vesicles (σ0 ) 0); (b) unwinding of tense vesicles (σi ) σ0).
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force on the equator (σ ) σf) is given by

The stem is the thinner part controlled by surface tension
σ(x) and curvature r(x), where x is the coordinate measured
from the flower center.

The conditions of zero pressure and force balance give

which leads to

Equation 24 defines a characteristic length l for the
variations of rx. Setting lc ) R0 leads to a critical velocity

with K ) 4 × 10-20, η ) 10-3, and R0 ) 10 µm, it gives Uc0
) 0.4 µm‚s-1

Uc0 is the threshold current to form a tether. The critical
force fc corresponding to σf ) ηUc0 is fc ) (KηUc0)1/2 ) ηUc0R0,
which leads also to eq 25.

(ii) Pulling out (U > Uc0). Above Uc0, a tube is formed
and grows at a velocity U′ ) dL/dt. The driving force on
the flower is

and the stress σ ) η(U - U′). The condition f ) fc leads
to

2. Pull out from Tense Vesicles (σ0 > ηUc0) (Figure
3b). The situation described above was limited to floppy
depressurized vesicles, with a residual tension less than
ηUc0 ≈ K/R0

2 ≈ 10-7 mN‚m-1. We study here the extrusion
of tubes from a slightly tense membrane with σ0 . ηUc0
(Figure 3b).

(i)ThresholdCurrent Uc: StationaryRegime. TheStokes
force on the vesicle (radius R0) must be equal to the critical
force fc corresponding to σ0. This defines the critical current
Uc

Uc defined by eq 28 can also be written as

where V* ) σ0/η is a capillary velocity.
The shape of the flower is quasispherical, with a small

meniscus of typical size rc ) (K/2σ0)1/2.
At Uc, in the stationary regime, the profile of the stem

is given by eq 11 with Ux ) U all along the tube at rest.

It leads to

with l2 ) K/2̃ηUc = rcR0.
(ii) Extrusion: U > Uc. Above Uc, the vesicle is extruded

at a velocity U′ ) L4 . The driving force of unwinding is

showing that

(iii) Profile of the Extruded Tube. As the tube gets very
long, one shall also include the friction on the tube. In the
reference frame of the globule, the velocity of the tube is
called u′x. At the tip, u′L ) U′ and r ) rm. The lipid
conservation equation becomes rmU′ ) rxu′x ) rcu′0, where
u′0 is the velocity of extrusion at the neck between the
vesicle and the tube. The balance of forces on a tube
element dx (Figure 2) including the friction of the solvent
moving at a relative velocity U - (U′ - u′x) against the
tube becomes úP(U - U′(1 - rm/r)) dx + f(x) ) f(x + dx).

With f(x)/2π ) K/r, we get -Kr′/r2 ) 2̃η(Uc + (U - Uc)-
rm/r).

For U = Uc, the profile is given by eq 30. For U . Uc,
we find ln r/rc ) -2ηUrmx/K.

Setting r ) rm for x ) L leads to rm/rc ) e-Lrm/l2, that is,
rm/rc ≈ Lc/L ln U/Uc, setting, as before, l2 ) K/2̃ηU and Lc
) l2/rc.

3.Roleof IncreasingSurfaceTension. Theextrusion
of the tube, especially at low σ values corresponding to
“thick” tubes, decreases the excess surface, and the tension
of the vesicle starts to increase. According to eq 29, Uc also
increases and L4 ) U′ decreases down to U′ ) 0. The vesicle
is then in a stationary regime and the length of the tube
remains constant. The maximal stress reached is given
by eq 28 with Uc ) U and σ∞ ) η2U 2R0

2/K (≈2 × 10-5

N‚m-1 for U ) 100 µm‚s-1 and R0 ) 10 µm).
4. “Stop Flow”: Vesicle Relaxation (Figure 8). Here

the attachment point A is fixed, and the vesicles relax by
“eating” their own tube. We assume as before that the
tube is “petrified” in its building configuration. The
gradient of surface tension can relax only by a slow
diffusive mode, as shown in the Appendix. The fastest
process is the relaxation by the free end, here the flower.

As the vesicle eats the tube, its radius R0 does not
change. The vesicle moves at the velocity L4 of the tube
retraction. The friction forces on the vesicle balance the
mechanical force f(x)L(t)):

At this point, we must specify the history of the tube
extraction:

If the vesicle under flow has reached a stationary state
(U ) Uc), the force is given by

The solution for L(t) is

where L̃0 ) 3/2̃R0 + L0.

σf lf ) ηUlf (22)
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The retraction time τret ≈ 3/2̃(R0/Uc) ln(L0/R0) is inde-
pendent of the viscosity of the liquid. This can be checked
by using a water/glycerol mixture: the threshold velocity
decreases as η-1, while τret should remain constant.

V. Observations of Tube Retractions

Here, we present our experimental results and compare
them with previously described theoretical predictions.
Tether formation was achieved by two different methods:
(1) mechanical pulling and (2) electroosmotic flow. Re-
traction dynamics studies were performed in both cases.
Mechanically extruded tubes were obtained by micropipet
manipulation. This technique allows a fine control of
membrane tension and provided us with a detailed
description of the retraction velocity as a function of
membrane tension. Electroosmotically extruded tubes
were obtained from flaccid (unsucked) vesicles. By forming
tubes under flows, we were able to monitor the exponential
retraction dynamics predicted in the theoretical section.

1. Micromanipulation Experiments: Retraction
of Tubes Pulled out at Constant Velocities U. Figure
4 displays snapshots of a tether retraction sequence which
starts when the suction pressure is released in the pipet.
A 5 µm glass microbead is glued to the free end of the
tube. For the time course of complete retraction (from <1
to 5 s), the gravity of the bead (≈50 fN) is negligible and
the motion of the bead which is pulled by the shrinking
tube was observed to be straight. The time dependence of
the tube length was obtained by simultaneously tracking
the interdistance between the two ends of the tube and
by a direct measurement of the tube length after applying
appropriate thresholds to the images. Despite a weak
signal, a spatial resolution better than 1 µm was thus
achieved, while the temporal resolution was fixed by the
video rate (25 Hz).

From the theoretical description presented above, three
parameters are supposed to play a key role in the dynamics
of tube retraction: the membrane tension, σ, the solvent
viscosity, η, and the extraction velocity, U. This reveals
that the history of tube formation influences the dynamics
of retraction. In all our experiments, we selected PBS
buffer (phosphate buffered saline) as a solvent (η ) 10-3

Pa‚s) to fill in the manipulation chamber.
In a first set of measurements, tethers were extracted

at a constant and low speed, U ) 15 µm/s, which sets the
characteristic length scale, Lc, between a few hundredths
of a micron and several millimeters for vesicle tensions

in the 10-3 to 0.5 mN/m range. Data were obtained from
more than 20 vesicles (or tethers) with radii Rv ranging
from 10 to 30 µm and tether lengths Lt between 50 and
100 µm. The radius of the beads, Rb, was kept constant
and equal to 2.45 µm. Figure 5 shows the time evolution
of tube lengths for three different membrane tensions fixed
by pipet aspiration. Initial lengths were on the order of
100 µm. Over the whole sequence, tube retraction occurred
at constant velocity, Vc. More interesting, Vc was found
to increase with σ. From flaccid (σ ≈ 10-3 mN/m) to tense
vesicles (σ ) 0.5 mN/m), retraction speeds span over 1
order of magnitude. In Figure 6, we plot the square of Vc

versus the membrane tension. For each data point, two
to five vesicles were evaluated. At low tensions, the
uncertainty is mainly in the estimate of σ. At higher
tensions, retraction occurred within less than 1 s, which
yields higher uncertainty on velocity measurements. The
graph was fitted with a linear function, and the slope was
found to be equal to 3.56 × 10-4 N-1‚m3‚s-2. This
dependence is in good agreement with eq 19, which
predicts a linear variation of Vc

2 with σ for initial tube
lengths below Lc, with a prefactor equal to 2κ/(9η2Rb

2) )
1.48 × 10-4 N-1‚m3‚s-2.

Figure 4. Fluorescence videomicrographs of a tube retraction sequence after extraction by mechanical force. The vesicle is maintained
by the pipet, and the bead (invisible) is moving back to the vesicle. The bar length is 50 µm.

Figure 5. Representative temporal evolution of tube length
during retraction for different vesicle tensions: (2) σ ) 10-2

mN‚m-1; (b) σ ) 10-1 mN‚m-1; (9) σ ) 0.3 mN‚m-1.
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In a second set of experiments, we attempted to form
tethers at higher speeds. The main difficulty came from
the fact that fast and irregular extrusion led to a pearling
instability which has already been observed and studied
by others.26 Extraction speeds of 400 µm/s could be reached
on about 10 weakly aspirated vesicles. Figure 7 displays
the retraction dynamics of two “identical” tethers pulled
respectively at low speed (U ) 15 µm/s) and high speed
(U ) 400 µm/s). By “identical”, we mean that the tethers
were formed from equally tense vesicles (σ ) 10-2 mN/m)
and that their initial lengths were comparable (≈70 µm).
Lengths were normalized to L(t)0) for the sake of
comparison. While the time dependence of the slowly
extruded tube could be fitted with a linear function, as
shown in the previous paragraph, there was a significant
deviation from linear behavior for the tethers which were

extracted at high speed. A better fit was obtained using
the logarithmic function derived from eq 20: L ) -R loge-
(ât + γ). The choice of this fitting function was validated
by the fact that L0 . Lc ≈ 20 µm for U ) 400 µm/s. Values
for the fitting parameters were R ) 0.89, â ) 1, and γ )
0.32. These values are consistent with theoretical predic-
tions, since the combination of eq 20 with the definition
of Lc shows that Lc/L0 is equal to the product Rγ ) 0.28
(which is indeed found for L0 ) 70 µm in Figure 7). From
this L(t) retraction curve, we have derived the shape r(x)
of the tube according to eq 18. As predicted theoretically,
the radius is found to be not constant and decreasing from
the vesicle to the tip.

2. Electroosmosis Experiments: Retraction of
Tubes Pulled out under Flow. Figure 8 displays
fluorescence video-micrographs of a tether retraction
sequence which starts when the voltage was set to zero.
First, the tube was extracted under a current U ) 0.11
µm/s, and we waited till the stationary regime was reached.
Contrary to mechanical experiments, the end of the tube
is here attached to the substrate, while the vesicle is pulled
back by the shrinking tube. Another major difference with
the micropipet experiments is that these electroosmosis
experiments were performed in a mixture of PBS and
glycerol (v/v ) 34/66). The higher viscosity of the medium
(η ) 32 cP) was useful to avoid any significant effect of
the neighboring surface on the hydrodynamics around
the tube. As a consequence, tube retractions typically
occurred within several minutes for initial tube lengths
L0 larger than 50 µm (Figure 8). More interesting, the
time dependence of the tether length was found to be
significantly different from the one observed in the
micropipet experiments. In Figure 9, we plot L(t), the time
evolution of tube length. The retraction velocity is observed
to be not constant. More precisely, we fit the experimental
data using eq 34. An excellent agreement is observed, and
the fitting parameters are L̃0 ) 89.8 µm and Uc ) 0.099
µm‚s-1. These value are consistent with the analytical
expression of L̃0 given by eq 34 and the experimental value
of Uc at the stationary regime (R0 ) 14.8 µm with K ) 4
× 10-20 J and Uc ) U ) 0.11 µm‚s-1).

The nontrivial influence of the surface proximity coupled
with the viscosity of the surrounding medium and the
dependence of Uc upon the electric field and surface tension
are being currently investigated and will be described in
detail in a forthcoming paper.

(26) Bar-Ziv, R.; Moses, E.; Nelson, P. Biophys. J. 1998, 75, 294-
320.

Figure 6. Square of the retraction velocity versus membrane
tension in the regime of constant retraction velocity. Linear fit
yields V2 ) (3.56 × 10-4)σ.

Figure 7. Influence of the extraction speed on the retraction
dynamics when tubes are pulled out by mechanical forces: Tube
length versus time. For (O) U ) 15 µm/s, the retraction velocity
is constant. For (9) U ) 400 µm/s, the best fit was obtained for
L ) -0.89 loge(t + 0.32). Inset: Shape r(x) of the tube extracted
at U ) 400 µm/s, derived from the retraction curve according
to eq 18.

Figure 8. Fluorescence videomicrographs of a tube retraction
sequence after extraction by electroosmotic flow. The tube is
attached to a point (microbead) on the substrate, and the vesicle
is moving back by eating its own tube. The bar length is 20 µm.
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VI. Concluding Remarks
We have described the dynamics of extrusion and

retraction of lipid nanotubes formed either by local forces
or by flows.

1. Extrusion by Local Forces. A small bead (radius
Rb) is linked to the membrane of the vesicle (tension σ
imposed by a pipet suction) and pulled out at velocity U.
In this way, we have shown that, to achieve well calibrated
tubes of length L, the extrusion velocity must be less than
Uc ≈ fc/ηU, which compares a characteristic friction on
the tube to the static threshold extrusion force fc. At higher
speeds, the tube is no longer uniform: going from the
vesicle end to the tip (bead end), the stretching force f(x)
increases from fc to ft, while the tube radius decreases and
the membrane stress increases. The force f(x) is directly
measured by looking at the relaxation of the tube,
terminated by the bead. The retraction by the free end is
much faster than the relaxation of the gradient f(x) along
the tube. The force field f(x) is “frozen”. The motion of the
bead results simply from a balance between the Stokes
friction on the bead moving at the retraction velocity L4
and the “frozen” force f(x). Our experiments on tube
relaxations are in agreement with these predictions: for
tubes extruded at low velocities, the retraction velocity is
constant and scales as σ1/2. In the opposite limit of fast
extrusion, the retraction velocity slows down and the law
for L(t) fits our theoretical predictions.

2. Extrusion by Flows. Vesicles, linked locally by a
bead to a substrate, are unwound by flows (velocity U).
Above a threshold velocity Uc, a tube is formed and its
length increases up to a stationary regime: here, unlike
the case for extrusion by local forces, the tension of the
vesicle is not maintained constant; rather, it increases to
reach a value σ∞ such that U ) Uc(σ∞). Experiments to
measure the relation between σ∞ and U are underway (σ∞
∝ U 2 is predicted).

Tubes of lengths varying from several microns to
millimeters at high flows can be built. This type of tube
extrusion is extremely easy to set up and does not require
any micromanipulations, as opposed to all the techniques
used previously. A dispersion of sticking beads is deposited
on a substrate. Vesicles attach spontaneously to the beads,
and a flow is applied either by a pressure gradient or by
an electrical field.

We see two applications of this work:
(1) This unwinding of giant vesicles induced by flows

can be used to stretch living cells as well, and experiments
on red blood cells are underway. This will allow us to test
the mechanical response of the cytoskeleton (spectrin

network) induced by the stretching of the membrane, in
a well-controlled geometry.

(2) The extrusion of a tube may be a way to encapsulate
proteins or DNA inside tubes of section varying from
hundreds of nanometers to several microns. DNA adsorbs
slightly on the membrane of our giant vesicles despite the
same sign of electrical charges (negative). This condition
of weak binding may be favorable to extrude DNA
membrane complexes and achieve one-dimensional DNA
structures, encaged in a tube of well-controlled geometry.
This may have numerous applications, in particular to
follow chemical binding reactions of proteins with DNA.

VII. Experimental Section
1. Vesicles.Phospholipid vesicles of various compositions were

used for the sake of practical convenience. In experiments dealing
with tubes pulled out at constant velocity, vesicles were made
from a mixture of EPC (egg phosphatidylcholine, Avanti Polar
Lipids Inc.), a biotinylated lipid, namely DOPE N cap Biotinyl
(Avanti Polar Lipids Inc.), and a fluorescent lipid, Bodipy 530-
C5-HPC (λexcitation ) 530 nm, λemission ) 550 nm, Molecular Probes)
in a 98/1/1 weight ratio. The biotinylated lipid was used to make
vesicles sticky for streptavidin-coated beads. The fluorescent lipid
allowed visualization of submicronic membrane tubes by fluo-
rescence microsopy. In experiments carried out on tubes extracted
under flows, vesicles were made from dioleylphosphatidylcholine
(DOPC). In this case, fluorescent labeling was performed by
perfusion of Di6-ASPPS (1% v/v in ethanol, λexcitation ) 465 nm,
λemission ) 560 nm, kindly provided by Mireille Blanchard-Desce,
Université de Rennes, France). This fluorophore appeared to be
less sensitive to photobleaching and thus more convenient for
long periods of observation.

In both types of experiments, vesicles were prepared using
the electroformation method described in ref 27. Electroswelling
was carried out in a solution of sucrose to enhance contrast in
DIC (differential interference contrast) microscopy observations.
Osmolarity was set at 148 mOsm so that vesicles were initially
flaccid. The vesicles obtained in this way were usually large,
with diameters from 10 to 100 µm, and the majority of them
appeared to be unilamellar. In the electroosmosis experiments,
glycerol was added to the external solution in order to increase
the viscosity of the medium (see section V.2)

2. Microbeads. For retraction experiments performed on
tethers extruded by mechanical force, we used homemade
streptavidin-coated glass beads as handles. Borosilicate micro-
spheres (4.9 ( 0.5 µm in diameter, Duke Scientific Corp) were
chemically modified following a three-step procedure described
elsewhere.28 Briefly, after activation with an aminosilane (N-
[3-(trimethoxysilyl)propyl]ethylenediamine, Sigma-Aldrich) and
reaction with a biotinylated cross-linker (NHS-PEG3400-biotin,
Shearwater Polymers), beads were finally coated with strepta-
vidin (Jackson ImmunoResearch Laboratories Inc.).

For experiments carried out on tethers formed by electroos-
mosis, we used amino-functionalized beads as attachment points
to the substrate for vesicles. These amino-beads were kindly
provided by Spherotech (AM-10-10, 1.27 µm in diameter). They
were used after washing and resuspension in PBS (phosphate
buffered saline) at high dilution.

3. Mechanical Experiments: Micromanipulation. Mi-
cropipets were formed by pulling needles from glass capillary
tubing using a horizontal laser pipet puller (P-2000, Sutter
Instrument Co.) and by breaking off the tips with a microforge
at the desired inside diameters (2-10 µm). All the mechanical
experiments were performed in a small chamber made of two
cover slides separated by 2 mm.29 The chamber was mounted on
an inverted microscope (Axiovert 200, Zeiss) equipped with a
100-W Hg lamp, narrow ((20 nm) band-pass filters, a 100× Plan-
Apochromat oil immersion objective (N. A. 1.4), and an intensified

(27) Dimitrov, D. S.; Angelova, M. I. Bioelectrochem. Bioenerg. 1988,
19, 323-336.

(28) Merkel, R.; Nassoy, P.; Leung, A.; Ritchie, K.; Evans, E. Nature
1999, 397, 50-53.

(29) Needham, D.; Zhelev, D. V. Surfactant Sci. Ser. 1996, 62, 373-
444.

Figure 9. Length of retracting tube versus time when tubes
are pulled out under electroosmotic flows. The dotted line is
the fitting curve derived from eq 34.
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camera (Lhesa). Beads and vesicles were manipulated in the
chamber with micropipets mounted on piezodriven microman-
ipulators (Physik Instrumente).

The suction pressure in the vesicle-holding pipet was controlled
by adjusting the height of a water-filled reservoir connected to
the back of the pipet. A pressure transducer (Validyne, DP103)
was used to measure the applied pressure. Typical pressures
were in the range 0-0.1 Pa. Membrane tension σ was computed
from the formula29 σ ) ∆PRp/[2(1 - Rp/Rv)], where ∆P is the
applied suction pressure, Rp is the inner radius of the pipet, and
Rv is the radius of the portion of the vesicle outside of the pipet.

In preparation for membrane tether extrusion, the chamber
was filled with a suspension of biotinylated fluorescent vesicles
at one side and with a diluted suspension of avidin-coated
microbeads at the other side. A single vesicle was selected and
aspirated into one pipet, while a bead was picked up by the second
pipet. To form a tether, the bead was moved into contact with
the vesicle and allowed to stick to it. The bead was then retracted
at constant speed up to distances of about 100 µm. When the
suction pressure in the bead-holding pipet was released, the bead
was pulled back to the vesicle by the retracting tether. Retraction
sequences were recorded in real time with a VCR.

4. Electroosmosis Experiments. The electroosmosis cham-
ber was assembled by sandwiching two pieces of a silicone sheet
(Gelpack TM, 400 µm thick) between two clean glass cover slides.
Typical sizes of the chamber were 20 × 2 mm2. The chamber was
mounted on an inverted microscope (Axiovert 135, Zeiss) equipped
for fluorescence observation (as described in the previous
paragraph). Amino-beads (1.27 µm in diameter) were first seeded
at low surface density (about 1 bead/500 µm2) on the bottom of
the chamber. After washing and exchanging PBS with a PBS/
glycerol (v/v 34/66) solution, vesicles were incorporated at one
end of the channel. The electric field, E, was applied by connecting
two platinum wires to a low voltage generator. Typical values
of E were in the range from 1 to 20 V‚cm-1. In all the experiments,
the voltage was increased gradually until the desired length of
the tube was reached. Retraction dynamics was monitored by
switching off the voltage at time t ) 0, and the sequences were
recorded with a VCR. We took into account possible spatial
variations of the glass surface potential by performing a
calibration of the current U as a function of E after each
extrusion-retraction experiment. Fluorescent microbeads served
as flow tracers, and we found out that typical values for U were
in the range 0.05-10 µm‚s-1.

5. Image Analysis. After digital capture of sequences of
interest (Matrox Meteor-II/digital frame grabber), the images
were analyzed using homemade software to derive the tube length
as a function of time.
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Appendix A: Extrusion Force at the Vesicle/Tube
Interface (Figure 10)

We present here a simple view of the extrusion force
derived carefully in ref 2:

The lipid fluxes J1 and J2 flowing out of the external
and internal lipid layers (thicknessh) during theextraction
of the tube are

If n+ is the number of lipids in the outer membrane and

n- is the number in the inner membrane, lipid conser-
vation leads to

where υ is a lipid molecular volume.
This dissymmetric pumping creates a force with both

an elastic and a viscous component:
1. “Elastic” Force. The dissymmetry between the

densities of the two monolayers leads to a spontaneous
curvature c0 ) n+ - n-/njh and an energy E ≈ Kc0

2R0
2.

Using eq A4, it leads to E ≈ KL2/R0
2. The associated

restoring force F ) ∂E/∂L scales such as KL/R0
2.

2. Interlayer Drag Force. The friction between the
sliding monolayers moving at velocities v1 and v2 can be
estimated from the viscous dissipation TS4 ) L4 fυ ) ηM((v1
- v2)2/h2)hr2, where we have assumed that the drag force
is limited to an area of typical size r. v1 - v2 is related to
J1 - J2 by J1 - J2 ) 2πrh(v1 - v2). With v1 - v2 ≈ hL4 /r,
we get fυ ) ηML4 h. The measure of fυ

29 leads to a lipid
viscosity ηM ≈ 500 ηwater.

Appendix B: “Frozen” Forces Approximation
We have assumed that the relaxation of the gradient

of surface tension along the tube was slow, compared to
the destruction by the free end. To justify this hypothesis,
we look at the relaxation of a periodical modulation of the
stress σ(x) or of the density Γ(x)

For a plane surface, this mode has been studied by
Lucassen30 in the case of a monolayer, floating on a liquid
bath of thickness e. A gradient of surface tension σ ′ )
dσ/dx gives rise to a shear flow V ) Vsx/e. The viscous
stress at the interface must balance the surface stress:

(30) Lucassen, J. Chem. Eng. Sci. 1972, 27, 1283.

Figure 10. Extrusion of a tube (length L) from a vesicle. The
vesicle is maintained at constant stress σ by micropipet suction.
An adhesive bead (black dot) is linked to the membrane and
is moved at velocity U. The inset represents a zoom of the
boundary between the tube and the vesicle where rt ) r is the
tube radius, h the thickness of the lipid bilayer, and J1 and J2
the lipid fluxes flowing out of the external and internal lipid
layers during the extraction of the tube.

- d
dt

(n+ - n-) )
J1 - J2

υ
) 2πh2L4

υ
(A4)

σ(x) ) σ0 + σ1e
iqxe-t/τq (B1)

Γ(x) ) Γ0 + Γ1e
iqxe-t/τq (B2)

η
Vs

e
) dσ

dx
(B3)

f ) fc + ηS ln(R0/r) + KL/2R0
2 (A1)

J1 ) 2π(r + h)hL4 (A2)

J2 ) 2πrhL4 (A3)
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The lipid flow is thus

Equation B4 defines a diffusion coefficient

where E ) Γ dσ/dΓ is the elastic modulus associated to the
compression of the monolayer.

The Lucassen modes are derived from eq B4 and the
mass conservation

The modes are diffusive (1/σq ) Dq2), with a diffusion
coefficient D ) Ee/η. We can also find this result from a
transfer of elastic energy Fq ) 1/2E(du/dx)2 (where u is the
molecular longitudinal displacement) into viscous loses.

For a curved surface of radius r, the flows inside the tube
are plug flows (Figure 11) and outside they extend on the

penetration length (1/lp
2 ) q2 + Fω/η). The energy transfer

per unit length can be written as

where we included dissipation inside the bilayer (viscosity
ηM) and in the surrounding liquid.

Equation B8 leads to a dispersion relation

This equation defines a threshold wave vector qc
2 ) η/ηMhr.

At very short wavelengths, the mode relaxes with a
caracteristic time τ ) ηMh/E. At the long wavelengths
studied here, the mode is diffusive

This mode is similar to the diffusive Lucassen mode, with
the radius of the tube instead of the thickness of the
shallow liquid bath.

If we look at the relaxation of a gradient extending over
the tube length L, the relaxation time Trel is given by

We must compare this time to the retraction time. In the
case of the retraction of a tube attached to a bead
(paragraph IV.1), the velocity of retraction is V ) σr/ηRb.
The retraction time is then

Assuming E ≈ σ, the comparison of eqs B11and B12 shows
that

As long as L . Rb, the tube is destroyed by its free end
and the forces along the tube are frozen. To check this
result, we have performed the following experiment: we
extruded a vesicle (tension σ1) at a fast velocity U, and we
released it suddenly: the velocity of retraction is not
uniform. On the other hand, if we keep the bead at rest
for a while (few minutes) and let it go, we observe a
retraction at uniform velocity, showing that the tension
has relaxed to σ1 all along the tube.

LA026236T

Figure 11. For a curved surface of radius r, the flows inside
the tube are plug flows (velocity Vs) and outside they extend
on the penetration length l.
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dΓ
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+ div J ) 0 (B6)

F4 q ) Eq2uu3 ) -η(u3e)2
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F4 /m ) rEq2uu3 ) -(ηMhru3 2q2 + ηu3 2
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(B9)

1
τq

) Dq2 (D ) Er
η) (B10)

Trel ) ηL2
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