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We show that the formation of membrane tubes (or membrane tethers), which is a crucial step in many
biological processes, is highly nontrivial and involves first-order shape transitions. The force exerted by
an emerging tube is a nonmonotonic function of its length. We point out that tubes attract each other,
which eventually leads to their coalescence. We also show that detached tubes behave like semiflexible
filaments with a rather short persistence length. We suggest that these properties play an important role
in the formation and structure of tubular organelles.
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Biological membranes (such as the endoplasmic reticu-
lum, the Golgi apparatus, the inner mitochondrial mem-
brane, or the plasma membrane) often form highly
dynamic tubular networks [1]. The formation and trans-
port of membrane tubes (tens of nanometers in diameter)
are thought to involve motor proteins that are able to grab
the membrane and pull on it as they move along the fila-
ments of the cytoskeleton [2]. Nanotubes (or tethers) can
also be pulled out by various experimental techniques
(such as hydrodynamic flow [3], micropipettes [4], or
optical tweezers [5]), and very recently Roux et al. [6]
have managed to set up a minimal in vitro experimental
system, in which tubes have been pulled by kinesin
motor proteins. The physics of long tubular membranes
is relatively simple and is well understood. However,
the initial formation of nanotubes from planar or large
spherical pieces of membrane is a subtle process, the
understanding of which is crucial to the study of various
biological processes (involving tube formation or simply
membrane pulling). In addition to tube formation we
also study the interaction of membrane tubes pulled from
the same membrane, and make a few comments on the
mechanical properties of detached membrane tubes.

Living cells maintain the surface tension of most of their
membranes at a constant level by keeping lipid reservoirs
(at fixed chemical potentials) [5]. A constant pressure in
closed vesicles is also maintained via osmosis. Therefore,
for our study we choose the ensemble in which the surface
tension s and the inside pressure p (relative to the outside)
are fixed rather than the surface area of the membrane A
or the volume of the vesicle V .

With the bending term included the free energy of the
membrane can be written as [7]

F �
Z k

2
�2H�2 dA 1 sA 2 pV 2 fL , (1)

where k is the bending rigidity and H is the mean curva-
ture of the membrane. The membrane is pulled in the Z
direction with a point force f, and the end-to-end distance
of the membrane in this direction is denoted by L.
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For a tube of length L and radius R the free energy (at
p � 0) can be written as Ftube � �k��2R2� 1 s�2pRL 2
fL. To minimize Ftube the surface tension acts to re-
duce the radius, while the bending rigidity works against
this. The balance between the two sets the equilibrium
radius R0 and force f0, which can be calculated by taking
≠Ftube�≠R � 0 and ≠Ftube�≠L � 0:

R0 �

r
k

2s
, f0 � 2p

p
2sk . (2)

For typical values of k � 40 pN nm and s � 0.05 pN�
nm, one finds R0 � 20 nm and f0 � 12.6 pN.

For simplicity we consider only axisymmetric surfaces
with the Z axis being the symmetry axis (Fig. 1a, upper
inset). Such surfaces can be parametrized by the angle
c�S�, where S is the arclength along the contour. The
coordinates R�S� and Z�S� depend on c�S� through

�R � cosc, �Z � 2 sinc , (3)

and the mean curvature can be expressed as

2H � �c 1 �sinc��R . (4)

For axisymmetric surfaces, one can derive the so-called
general shape equation from the free energy (1) by varia-
tional methods [8,9]:

...
c � 2

1
2

�c3 2
2 cosc

R
c̈ 1

3 sinc

2R
�c2 1

3 cos2c 2 1
2R2

�c

1 s̄ �c 2
cos2c 1 1

2R3 sinc 1
s̄

R
sinc 2 p̄ , (5)

where s̄ � s�k � 1��2R2
0 � and p̄ � p�k. Taking the

first integral of this equation leads to [9]

c̈ cosc � 2
1
2

�c2 sinc 2
cos2c

R
�c 1

cos2c 1 1
2R2 sinc

1 s̄ sinc 2
1
2

p̄R 2
f̃
R

, (6)

with the integration constant f̃ � f��2pk� � f�� f0R0�.
For nearly flat membranes (c ø 1), after the parameter

change �c�S�, R�S�� ! c�R�, one can expand the shape
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FIG. 1. (a) The shape of an emerging tube at various lengths.
The upper inset shows the parametrization of the surface, and
the lower inset illustrates the definition of Ltube, which is the
size of the deviation of the shape from the linear approximation
(dashed line). (b) Force vs length curves for three different ring
sizes. The inset shows the f-Ltube curve (solid line) and its
asymptotic fit by Eq. (13) (dashed line).

equation (6) in powers of c and keep only the terms up to
linear order:

R2c 00 1 Rc 0 2 �R2s̄ 1 1�c � 2f̃R 2 p̄R3�2 . (7)

Because of the parameter change, the primes denote
derivations with respect to R (which, in linear order of c,
are identical to derivations with respect to S). The general
solution of this differential equation is

c�R� �
f̃
s̄

1
R

1
1
2

p̄
s̄

R 1 c1I1�R
p

s̄ � 1 c2K1�R
p

s̄ � ,

(8)

where Ii�x� and Ki �x� are modified Bessel functions, and
c1 and c2 are integration constants. I1�R

p
s̄ � diverges

exponentially for R ! `. Because for a big vesicle we
expect the shape to converge to that of a sphere, c1 must
vanish. At R � 0 the divergence of the 1�R term must
be canceled by the K1 term, leading to c2 � 2f̃�

p
s̄.

Integrating 2c�R� with respect to R gives the shape of
the membrane in this linear approximation:
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Zlin�R� � Z0 2
2R0f

f0

∑
ln

µ
R

p
2 R0

∂
1 K0

µ
R

p
2 R0

∂∏

2
R2

2Rves
, (9)

where the integration constant Z0 serves as a reference
coordinate, and we have expressed s, k, and p in terms of
R0, f0, and vesicle radius Rves � 2s�p. The last term is
a trivial contribution, describing a spherical vesicle under
tension s and pressure p. The second term, which is
proportional to f, is the linear response, and describes
the deformation of the vesicle. The quantity between the
brackets converges to �ln�2� 2 g� for R ! 0, where g �
0.577, . . . is the Euler constant. For p � 0 and large R
the logarithmic term dominates, which corresponds to a
catenoid, the well-known shape of a soap film in cylindrical
geometry under zero pressure.

Because the pressure makes only a trivial contribution,
and has a negligible effect on tube formation from big
vesicles (plug pR � pR0 � 2sR0�Rves ø s into the
shape equations), we neglect it from now on, and consider
a piece of (initially flat) membrane that spans a ring of
radius Rring located at Z � 0.

For large deformations (or pulling forces) the linear ap-
proximation breaks down, and we have to solve Eq. (5)
together with Eq. (3) numerically. Note that Eq. (6) could
also be used, but it is numerically less stable. We start
solving the differential equations from the ring, where we
impose a zero curvature (or free hinge) boundary condi-
tion. Thus, the four initial parameters at Z � 0 are as fol-
lows: (i) R � Rring; (ii) c � arcsin� f��2psRring�� 2 ´,
where the small deviation ´ from the catenoid shape is
chosen (with a shooting and matching technique) such that
the contour line reaches the Z axis; (iii) �c � 2�sinc��R
ensures zero mean curvature [see Eq. (4)]; (iv) finally, c̈

is determined from Eq. (6).
The results of the numerical solution can be seen in

Fig. 1. The main part of Fig. 1a shows the shape (con-
tour line) of the membrane for Rring � 20R0 and differ-
ent values of L. For small deformations (left line) Eq. (9)
gives a very good approximation of the shape. In this lin-
ear regime the size of the deformation is approximately
Llin � Zlin�0� 2 Zlin�Rring�.

For larger deformations a tube emerges in the middle,
and the linear approximation fails. However, far from the
tubular part, where c is small, the approximation is still
valid (Fig. 1a lower inset). Thus, it is convenient to define
the tube as the piece between Llin and L, and the base as
the rest of the membrane between 0 and Llin. This way, the
dependence of the size of the total deformation L on the
ring radius Rring is absorbed in the size of the base Llin, and
the length of the tube Ltube � L 2 Llin (i.e., the devia-
tion from the linear approximation) becomes independent
of Rring.

With this definition it is enough to determine the f-L
curve for one particular ring size (e.g., 20R0), from which
238101-2



VOLUME 88, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 10 JUNE 2002
the universal (ring-size-independent) f-Ltube curve can be
calculated (Fig. 1b, inset). Because only the f-L curves
have real physical meaning, one can easily calculate them
from the f-Ltube curve for any ring radius (¿R0) by
simply adding Llin� f, Rring� to Ltube. The most intrigu-
ing feature of the f-L curves (shown in Fig. 1b for three
different values of Rring) is their nonmonotonicity. The
force first grows linearly, in accordance with the linear
approximation (9), and converges to f0 for large L. But
in between it overshoots by �0.13f0, and then oscillates
about f0 with an exponentially decaying amplitude. This
oscillation results in infinitely many intervals with negative
slopes, which, in the f ensemble (where f is the control
parameter rather than L), are mechanically unstable and
represent an infinite series of first-order shape transitions
at f0. Because Llin is a monotonically increasing function
of both f and Rring, the main peak becomes an overhang
for large rings (.20 000R0), leading to a first-order transi-
tion even in the L ensemble.

For a nearly cylindrical section, such as tubular part of
the membrane, the shape equations can be expanded in
powers of U�Z� � R�Z� 2 R0. After changing parame-
ters �c�S�, Z�S�� ! c�Z�, the expansion of Eq. (5) up to
first order in U�Z� and for p � 0 reduces to [10]

R4
0U 0000 � 2U . (10)

Here the primes denote derivations with respect to Z. The
solution of this equation is the sum of two exponentially
decaying oscillations from the two ends (Llin and L) of
the tube:

U�Z�
R0

� a1 exp

µ
2

Z 2 Llinp
2 R0

∂
cos

µ
Z 2 Llinp

2 R0
1 a1

∂

1 a2 exp

µ
2

L 2 Z
p

2 R0

∂
cos

µ
L 2 Z
p

2 R0
1 a2

∂
,

(11)

where the integration constants converge to a1 � 0.746,
a2 � 0.726, a1 � 0.347, and a2 � 3.691 (determined by
numerical fitting) as the length of the tube increases. These
oscillations can be seen in Fig. 2 as overshootings from
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FIG. 2. The shape of a tube magnified in the radial direction
(solid line), and the surface energy density (dashed line).
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both the base and the tip of the tube. They can be un-
derstood intuitively by noticing that the smaller (larger)
mean curvature near the base (tip) makes the effect of the
bending rigidity on the tube radius less (more) pronounced,
leading to a smaller (larger) R.

The expansion of Eq. (6) up to the first nonvanishing
order in U�Z� gives us the deviation of the force:

f 2 f0

f0
� R2

0U 0U 000 2
1
2

R2
0U 002 1

1
2

1

R2
0

U2. (12)

Plugging Eq. (11) into Eq. (12) yields

f 2 f0

f0
� 2a1a2 exp

µ
2

Ltubep
2 R0

∂
cos

µ
Ltubep
2 R0

1 a1 1 a2

∂
,

(13)

which is an exponentially decaying oscillation as a func-
tion of Ltube. This explains the observed nonmonotonic
behavior of the f-L curves, and gives a very good fit to
the f-Ltube curve (Fig. 1b, inset) with the same values of
ai and ai as determined above for the shape oscillations.
In a different ensemble, Heinrich et al. [11] also observed
similar oscillations for axially strained vesicles.

The surface energy density r � �k�2� �2H�2 1 s of
the membrane is plotted in Fig. 2. It grows from s to 2s

as we enter the tube from the base, and diverges at the tip.
Because at the tip the angle c is small again, Eq. (8) can be
used to describe the surface there, leading to a logarithmic
divergence of the mean curvature [10,12].

In experiments, bundles of tubes can often be observed
[6]. To study the interaction between two tubes, let us start
with a planar membrane that spans a ring and is pulled per-
pendicularly by two point forces ( f1 and f2) at a distance
d. If d is large enough (R0 ø d ø Rring), both protru-
sions (except for the vicinity of the points of pulling) can
be described by the leading logarithmic term of the linear
approximation (9). Their superposition can be used to cal-
culate the d dependence of the free energy of the mem-
brane. Note that fL in Eq. (1) has to be replaced by
f1L1 1 f2L2, where L1 and L2 are the sizes of the defor-
mations. A straightforward calculation results in an attrac-
tive potential F �d� � const 1 2R0 ln�d�f1f2�f0 between
the two deformations. The same attraction has been found
between membrane-bound adhesion molecules [13]. For
the attraction between two tubes, replace both f1 and f2
by f0.

To see what happens when two tubes get close, we per-
formed numerical energy minimization with the SURFACE

EVOLVER program [14]. We defined the initial topology
as a piece of membrane spanning a ring of radius 12R0 at
Z � 0, with two cylindrical protrusions in the positive Z
direction. We applied a zero curvature boundary condition
at the ring and reflecting boundary condition at Z � 24R0
(Fig. 3). To make sure that the two tubes do not coalesce
we placed a very narrow (øR0) cylindrical obstacle be-
tween the tubes, perpendicularly to them, and at a distance
h from the ring (not shown in Fig. 3). The obstacle sim-
ply pinned down the middle of the membrane at Z � h.
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FIG. 3. The pinning force fp as a function of h. It goes from
2f0�2 (because if two tubes are far apart their attraction can
be eliminated by a 2f0�2 point force applied halfway) to 2f0
(because for large h the junction is pulled by two tubes upward
but by only one tube downward). The solid line is a fit by an
exponentially decaying oscillation.

We then measured the pinning force fp (exerted by the
obstacle on the membrane) as a function of h. Figure 3
shows that fp is always negative (i.e., pushes the mem-
brane), meaning that there is no energy barrier against co-
alescence, it occurs smoothly. This is consistent with the
experiments of Evans et al. [4].

Tubes can be detached via fission and then transported
individually in the cell as long prolatelike vesicles (keep-
ing their original radius R0). Because of volume and area
constraints their energy contains only the bending term:
F �

R
�k�2� �2H�2 dA. Although with such a high area-

to-volume ratio the energetically most favorable shape is
the stomatocyte, these prolates are metastable [15]. They
are also very flexible. If we consider a prolate as a rod
and bend it with a curvature C (ø1�R0), its energy, for
symmetry reasons, increases quadratically with C. This
energy increase can be written as �k�2� �lC2�2pR0L,
where L is the length of the prolate, and the factor
l � �sin2f	 � 1�2 indicates that, during the integration
of the energy around a cross section (parametrized by f),
only the out-of-plane component of the bending counts.
Thus, the bending stiffness of a prolatelike vesicle is
kpR0, and its persistence length kpR0��kBT � is of the
order of a few hundred nanometers.

Although these prolates are thicker than the micro-
tubules, their persistence length is much closer to that of
a DNA. This is because their wall is a two-dimensional
fluid. Because of this fluidity they do not even resist
twisting, which makes them ideal semiflexible filaments.

We close this Letter by discussing some of the biologi-
cal consequences of our theoretical results. The major bi-
ological relevance of the first force peak of the f-L curves
is that, in order to form a tube, the motor proteins must
be able to provide a force that is 13% larger than what is
needed to pull a long tube. At a pulling force of f � f0 the
peak corresponds to a 2.1k � 21kBT high energy barrier,
which is practically insurmountable for such a big and slow
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object as a growing tube. Thus, tube formation works on
an all-or-nothing basis: motors can pull out tubes only if
they are strong enough to overcome the major force peak.

Although at the tip of the tubes the size of the lipids
(�0.5 nm) represents a natural cutoff length scale for the
divergence of the energy density, it goes up to tens of
s. In terms of membrane rupture, the energy density
acts as an effective surface tension, meaning that the most
likely place for rupture to occur is the tip of the tubes.
So if biological systems want to avoid rupture, they either
have to protect the tips or distribute the pulling forces at
larger areas. That could be achieved, e.g., by utilizing cap
proteins or lipid rafts.

We have shown that without external pinning tubes co-
alesce smoothly. Thus, to explain bundle formation, other
physical effects that could prevent the coalescence of tubes
(e.g., adhesion between the tubes and the cytoskeleton)
must be taken into account.
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