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We provide a phenomenological theory for topological transitions in restructuring networks. In this statisti-
cal mechanical approach energy is assigned to the different network topologies and temperature is used as a
quantity referring to the level of noise during the rewiring of the edges. The associated microscopic dynamics
satisfies the detailed balance condition and is equivalent to a lattice gas model on the edge-dual graph of a fully
connected network. In our studies—based on an exact enumeration method, Monte Carlo simulations, and
theoretical considerations—we find a rich variety of topological phase transitions when the temperature is
varied. These transitions signal singular changes in the essential features of the global structure of the network.
Depending on the energy function chosen, the observed transitions can be best monitored using the order
parametersb =s,,.«/M, i.e., the size of the largest connected component divided by the number of edges, or
D =kna/M, the largest degree in the network divided by the number of edges. If, for example, the energy is
chosen to be&E= —s,,,,, the observed transition is analogous to the percolation phase transition of random
graphs. For this choice of the energy, the phase diagram in(k)eT( plane is constructed. Single-vertex
energies of the fornE=ZX,;f(k;), wherek; is the degree of vertel are also studied. Depending on the form
of f(k;), first-order and continuous phase transitions can be observed. In céfe)ef — (k;+ a)In(k), the
transition is continuous, and at the critical temperature scale-free graphs can be recovered. Finally, by abruptly
decreasing the temperature, nonequilibrium proce&ses, nucleation and growth of particular topological
phasescan also be interpreted by the present approach.
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I. INTRODUCTION (ER) random graph modé¢b, 6], which occurs by varying the
average degreék) of the vertices aroundk)=1. For (k)
In recent years, the analysis of the network structure ok 1 the graph falls apart into small pieces, on the other hand
interactions has become a popular and fruitful method usefbr (k)=1 a giant connected component emergasaddi-
in the study of complex systems. Whenever many similation to the finite componentsAnother subtle example is the
objects in mutual interactions are encountered, these objectsapping of a growing network model onto an equilibrium
can be represented as nodes and the interactions as linBese ga$7]. For the latter model, under certain conditions a
between the nodes, defining a network. The World Widesingle node is allowed to collect a finite fraction of all edges,
Web, the science citation index, and biochemical reactiortorresponding to a highly populated ground level and
pathways in living cells are all good examples of complexsparsely populated higher energies seen in Bose-Einstein
systems widely modeled with networks, and the set of furcondensation.
ther phenomena where the network approach can be used is When connecting the graph theoretical aspects of net-
even more diverse. In most cases, the overall structure aflorks to statistical physics, one can step further from the
networks reflect the characteristic properties of the originahnalogies by directly definingstatistical ensembles for
systems, and enable one to sort seemingly very different syggraphs The use of a statistical mechanical formalism for the
tems into a few major classes of stochastic grapghg]. changes in graphs being in an equilibriumlike state is ex-
These developments have greatly advanced the potential fiected to provide a significantly deeper insight into the pro-
interpret the fundamental common features of such diverseesses taking place in systems being in a saturated state and,
systems as social groups, technological, biological, and othexs such, dominated by the fluctuating rearrangements of links
networks. The effects of both the restructurif® and the between their units.
growth [4] of the associated graphs have been considered, As an example, let us take a given number of units inter-
leading to a number of exciting discoveries about the lawsacting in a “noisy” environment. These units can be people,
concerning their diameter, clustering, and degree distribufirms, genes, etc. The probability for establishing a new or
tion. Real networks typically exhibit both aspedtwrowth  ceasing an existing interaction between two units depends on
and rearrangemenobne of which is usually dominating the both the noise and the advantage gairied los) when
dynamics. Here we concentrate on the evolution of graphadopting the new configuration. In this picture, a global tran-
due to restructuring, but shall briefly discuss the growth resition in the connectivity properties can occur as a function
gime as well. of the level of noise. For instance, if the conditions are such
Various interesting effects observed in networks can behat the interactions between the partners become more
interpreted using analogies with well understood phenomen&onservative” (safer choices are more highly valyed
studied in statistical physics. As a classical example, weéhen—as we show later—a transition from a less ordered to a
mention the percolation phase transition in the Br&anyi more ordered network configuration can take place. In par-
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ticular, it has been argud@] that depending on the level of amples of network optimization problems see REES,19).
certain types of uncertainti€gexpected fluctuationdusiness  To find the optimal configuration for a given task, the system
networks reorganize from a starlike topology to a system ohas to be cooled, using an appropriate energy function.
more cohesive, highly clustered ties. This paper is a direct extension of our previous wid@];
There are several possible ways to define the statistic&lovering more details, results, and different approaches. The
ensemble of networks. In Reff9,10], the members of the Paper is organized as follows. In Sec. Il we define the ca-
ensemble were identified by the Feynman diagrams of a fielonical ensemble of the networks together with the partition
theory in zero dimensiongcalled “minifield”), and the function and. other essential .thermodynamm guantities. In
weights of the graphs were given by the corresponding amoec. 1l we c'il'scuss the numerical methods used to study'the
plitudes calculated using the standard Feynman rules. THéhasfe transitions. I_n Sec. IV we present the phase transitions
ensemble obtained this way was characterized by the fract@Ptained for energies that depend on global properties, and
and spectral dimensions, and the dependence of the topologfC: V IS devoted to two interesting cases of single-vertex
of the graphs on these two parameters was discussed. TRE€rgies. In Sec. VI we discuss briefly the grand canonical
authors argued that in the parameter plane of two parametef&Se€mble of networks and we conclude in Sec. VII.
related to the fractal and spectral dimension, the region of
generic graphs and the region of crumpled graphs are sepa- Il. STATISTICAL MECHANICS OF NETWORKS
rated by a line; and on this separating line scale-free net-

works appear. An alternative definition for the partition func-_ . " .
PP P taining N nodes andM links. Each graptg, can be repre-

tion was proposed by Berg anddsig in Ref[11], resulting 1 A a :
in a simpler formalism, analogous to the statistical mechanS€nted by thedjacency matrix £}, whereAj; =1 if vertices

ics of classical Hamiltonian systems. They introduced d @ndj are connected and it is O otherwise. In a heat bath at
Hamiltonian for networks, and also a paramegeplaying temperatureT, the canonical ensemblef these graphsin

the role of inverse temperature. The weights of different@@logy with that proposed in Refl1]) can be defined by

graphs in the partition function were obtained from these twdhn€ partition function
guantities as in classical statistical mechanics. These studies
showed that Hamiltonians beyond the single-vertex form Z(T):z e EalT, 1)
(where terms depending on connectivities between the verti- {ga)
ces also appeptead to correlations between the vertices for
large 8. A similar model leading to interesting results was whereE, is the energy assigned to the different configura-
presented in Ref.12], where the Hamiltonian depended on tions.
the ratios of the degrees of neighboring vertices, and the The restructuring processes of the network can be inter-
dynamics favored disassortative mixing and high clusteringpreted via the following physical picture: The basic event of
The system organized itself into three phases depending oearrangement is the reallocation of a randomly selected edge
one parameter: the exponential, scale-free, and hub-leavélink) to a new position either by “diffusion’keeping one
states were produced, respectively. However, the nonuniforrand of the edge fixed and connecting the other one with a
selection of links at the rewiring in this model makes it im- new nod¢ or by removing the given edge and connecting
possible to satisfy the detailed balance condition. two randomly selected nodes. Then, the energy difference
In this paper we analyze the reorganization of networksAE,,=E,— E, between the originaj, and the newg, con-
from the point of view oftopological phase transitions.e.,  figurations is calculated and the reallocation is carried out
transitions in the graph structure as a functionterhpera-  following the Metropolis algorithnj21]. If the energy of the
ture, the quantity representing the level of noise during thenew graph is lower than that of the original one, the reallo-
restructuring process of the network. For clarity we note thatation is accepted; if the new energy is higher, the realloca-
our studies concern a class of phenomena that are cleartion is accepted only with probabilitgy™2Eab’T. This way, in
different from the phase transitions investigated by applyinghe T—« limit the dynamics converges to a totally random
models of statistical mechanics originally defined on regularewiring process, and thus, the classical ER random graphs
lattices to an underlyingstatio random network structure are recovered. On the other hand, at low temperatures the
[13-15, or the phase transitions observed in growing nettopologies with lowest energy occur with enhanced probabil-
works[7,16], or quasistatic networK4.7]. Topological phase ity. The resulting dynamics, by construction, satisfies the de-
transitions are accompanied by singularities in the thermodytailed balance conditiof21].
namic functions derived from the partition function of the  This network rearrangement is formally equivalent to a
statistical graph ensemble and can be characterized by Kawasaki-type lattice gadynamics with conserved number
drastic change in an appropriate order parameter. Our statief particles moving on a special lattice, which is the edge-
tical ensemblgsimilar to the one presented in R¢L1]) is  dual graph of the fully connected netwdik 22]. The sites of
defined by introducing aanergythat accounts for the advan- this lattice are the possibl(N—1)/2 connections between
tage or loss during the rearrangement. In our description, thithe vertices, and the particles wandering on the sites are the
energy may depend on either global properties of the netM edges, as shown in Fig. 1.
work or single-vertex degrees. The partition function(1) contains many terms corre-
The use of Hamiltonian formalism also provides a generakponding totopologically equivalentgraphs: these graphs
frame for the optimization of network structurdor ex-  can be simply transformed into one another by an adequate

We shall consider a sdg,} of undirected graphscon-
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=Kkmax/M, the highest degree in the grakh,, divided byM.
We also introduce the corresponding conditional free energy
F(P,T) via

efF((I),T)/TZZ(q),T): 2 efEa/T, (6)

{ga}d)

AN
¥

where{g,} is a subset ofg,}, consisting of all the graphs
with order parametef®. A phase transition, where a rapid
LS change occurs in the order parameter frdm=0 towards
higher values, is also accompanied by a shift of the minimum
of the conditional free energy(®,T). A sudden change in
the position of the global minimum signals a discontinuous
(first ordey phase transition, whereas a gradual shift indi-
cates either a crossover or a continuous phase transition.
In the following section we briefly discuss the numerical
methods used to study topological phase transitions.

IIl. NUMERICAL METHODS

FIG. 1. Two simple examples of grapfisft-hand sid¢ and the A. Exact enumeration method
corresponding edge-dual graphight-hand side The full spheres

) . _ _ The numerical results shown in this paper were obtained
in the edge-dual graphs represent occupied sites, corresponding

- . - : L l5‘§/ two alternative methods. Motivated by the success of a
existing bonds in the original grapldrawn with solid lineg and 2o - .
i . similar approach used in random walks, percolation, and
the hollow spheres are the empty sites, corresponding to absen
polymer related problem§23—-26, for small systems we

bonds (represented by dashed lindga the original network. The . . ) ..
rewiring of an edge in the original graphs is equivalent to the dis-€valuated the partition function together with the probability

placement of the corresponding particle on the edge-dual graph. of.every indiVidl,Jal state Viaj aexact enumeration methohh i
this approach, first all possible connected configurations with

permutation of the indexing. Since we consider enerfigs @ 9iven number of edges are generated successively Mp to

that depend only on the topology, it is natural to rewrite the graphs withm+ 1 edges are constructed from the graphs

the partition function in a form where the summation runsWith medges either by linking a new vertex to one of the old
through all possible topologies: vertices or by linking two previously unconnected vertices.

Next, all possible configurations containiyedges are ob-
B e tained from the combination of smaller connected graphs,
Z(T)—{Z} N el (2 with sizes up toM. Finally, V,, is calculated for each topol-
“ ogyt, by counting the number of possible permutations cho-
Here we introducedV,, to count the number of configura- Sen to label the vertices in the staEor more details and a
tions belonging to topology, . Expressior(2) can be rewrit- ~ Simple example, see Appendix)AThe probabilityp,,, of a

ten as topologyt,, then can be obtained from
./\/‘0197 E, /T
Z(T):E e*Ea/TJrln(/\/a):E e*Fa/T, (3) pa:T' (7)
{ta} {ta}
F,=E,—TS,, (4) Once the set of possible states with appropriate probabilities
has been constructed, one can evaluate the expectation value
S,=In(N,,), (5) of any @ thermodynamic quantity using

where F, is the free energy an&, is the entropy of the
topologyt, .

We are interested in the possible singularities in the ther-
modynamic functions derived from the partition function The advantage of this technique, besides producing exact
above, since they, if there are any, correspond to phase traresults, is that the set 0¥, has to be calculated only once,
sitions in the topology of the associated networks. Theséndependent of the energy functions considered, in contrast
transitions can be best monitored by introducing a suitabléo Monte Carlo simulations, where the simulation has to be
order parameterAs we are primarily interested in the tran- restarted from the beginning every time we introduce a new
sitions between dispersed and compact states, a naturgpe of energy. This method is limited by the rapid growth of
choice can be eitheb =® =s,,,,/M, the number of edges the number of topologies witM. For networks of size seen
of the largest connected component of the grapk, nor-  in the real world M>10?) the realization of this method is
malized by the total number of edged, or ®=®, clearly unfeasible.

<Q>=t2 At )P, - 8
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B. Monte Carlo simulations sition when the average degree of the verticék)
The lattice gas model defined on the edge-dual graph of 2M/N, is varied aroundk)=1. For(k)<1, the network
the fully connected network relaxes slowly, because interac;-;onS:(StS> gf Sm"’}”’ tdlsconnetctgd clusters, ?n the otherl h?r?d’
tions are densg27] and the energy minima are sometimes orr <h>/ll iinglan fir?i?nnecrtie N c?r:;]ponéen erlgergreti n riti-e
localized in hardly accessible parts of the phase space of g aph collecting a € portion of the edges. Near the ¢

system. A good example is the transition from a classicafiall)n)\;l)mt the size of the giant component scales @9 (
random graph—stable at high temperatures—to a star, which Based on the lattice gas analogy we expect thakjf

is stable at low temperatures. The simplest Monte Carlo re—<1, then for a suitable choice of the energpne that re-

wiring simulation(discussed in Sec.)ltries to move a ran- -\ ards clusteringa similar dispersed-compact phase transi-
domly chosen edge to a randomly chosen new locationg, oecyrs at a finite temperatufié(k)). Such a transition
However, this method is very inefficient, if one would like to ., pe best monitored by the order parameers,../M
simulate the condensation of edges into a star in a Iarg&he number of edges in the largest connected component
system. Smax divided by the total number of edgesften used in
There are several simulation tools that can help to achievgraph theory[29].
faster convergence. We have used the so-called parallel tem- The most obvious energy satisfying the above require-
pering(also called exchange Monte Carlmethod in several ment is a monotonically decreasing functiBre f(Sya,). In
cases[28]. Except for first-order transitions, this algorithm thjs case the energy is independent of the distribution of the
can be used well to measure the transition at an acceptabigze of smaller clusters, or of the structural details of the
speed and high precision. largest cluster: only the size of the largest cluster matters.
The algorithm can be viewed as an improved version ofrhe entropic part of the conditional free energy in this case
simulated annealing. Several replicas of the system are simigan be estimated by counting the number of configurations at
lated Simultaneously, and each of them is connected to given Smax- The number of different connected Conﬁgura-

separate heat bath. A replica in a hot heat bath will explorqions of Sizesya, can be estimated aﬁﬂm;; to leading order
the Igrge;scale structure of phase space, and the motion 30] (for an intuitive derivation see Appendix)BThis term
a replica in a cold heat bath will be restricted to a small par

of phase space, where it will explore the deep but narrow as to be multiplied by the number of possible selections of

enerav wells heses, ., vertices out ofN, which is simplyN over sy,,.
In%)r/le exchan e Monte Carlo method, after a given num:rhe'vI ~ Smaxleft-out edges can be placed anywhere between
ng o give the N— s, remaining vertices, with the restriction that they
ber of conventional update steps within each replica, ex-

change steps are made. Two repliéagh neighboring tem- gann:o(';) Ertrrc]) géujﬁ,egs)(tggf,; thlﬁm? g:&cfhgvte (i:(?;}ssl(ijz(eer of
peratures are chosen at random, and a Monte Carlo—type ™ S q Y yp

decision is made whether the two replicas should be e)?ghe Iarges_t component of these left-out edges scales slower
ttr]]an M, this constraint can be neglected. Hence, the contri-

I(\:/Ih;?gsgl,isl.c?yh;rr;?iléstﬁmﬂirztrgfjcts gfo ;Jhlg gﬁefgla&?fi?én\évgbution from the left-out edges can be well estimated by an
' (N—Sma?/2 over M—sp,,) factor. If we combine these

?eerawifguﬂ?gst&v%)reg Icigsxi@eanﬁ]éze t?}lige;ir;(;;?fén\i/serz(e} factors together, then in the thermodynamic linfithen
P P ' 9 N,M—oo, (k)= const) we can write

cepted, otherwise it is accepted only with probabiéity “E.
That is, a replica with a high energy and a low inverse tem- (N=dM)2/2
perature(i.e., high temperatujewill be more likely to re- J\/dus%(@SM)‘bsM(q) M ( M—(Si) M )
main in its own heat bath, whereas a replica with a high S s
energy and a high inverse temperatire., low temperatuve  since the energy of the system is a function of the order
will be likely to be “put” into a heat bath with a higher parameterd, itself, the conditional free energl(®s,T)

temperature. . can be expressed as
We shall now move on to review some of energy func-

tions, which lead to phase transitions when the temperature e F(®sD/T= A7, o= (P T=g-[[(P9-ThNaud/T (10
is changed from zero to infinity at constaiik). Since atT

== the entropically favorable graphs dominate, a minimumBy using Stirling’s formula[l!~(l/e)'\J/2#l] to approxi-
requirement for the energy function is that the configurationsgnate the factorials and neglecting terms ©{InN), for
with the lowest energy must also have low entropy. We di-In N, we get

vide the investigated energy functions into two categories. In

9

the first category we put the energies that depend on compo- _ 2M ﬂ
nent sizes in the graph, the other group contains the single- In Nowsconstt | 1+1n N N M
vertex energies.
3M 1 M?|
IV. CLUSTER ENERGIES Tlan T2 e | PsM (11

As mentioned in the Introduction, the classical randomBy replacing 2M/N with (k) in the expression above, the
graph modelcorresponding td@ — ) exhibits a phase tran- resulting conditional free energy can be expressed as
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FIG. 2. The phase diagram and the order parameter foEthe ¢

= —Snax €nergy. Main panel: The white and shaded areas corre- 160 180 200 220 240
spond to the ordered pha&mntaining a giant componerdand the T

disordered phase, respectively, as given by 8d). Inset: The

order parameteb = d =s,,,,/M obtained from Monte Carlo simu- FIG. 3. If the energy of the graph B= —s?,,, then the order
lations as a function of the inverse temperature (for=0.1 (tri- parameter®,=M,/M, shows a first-order transitionM is the

angle$ and(k)=0.5 (circles. Each data point is an ensemble av- number of edges in the largest component of the gyadch point

erage of ten runs, time averaged betweerlOON and 50N Monte  gives the value ofd, averaged betweeb=490N and t=500N

Carlo steps. The open and closed symbols reprelden500 and  Monte Carlo steps in a graph startedtatO from an Erds-Renyi

1000 vertices, respectively. The critical exponent, in agreement witlhandom grapho) or a star (<). The simulated graph had=500

the analytical approximationsolid lineg,was found to be 1. vertices andM =125 edges. The inset shows the behavior of the
analytical free energy obtained from E{.2) using the same pa-

rameters. The temperature interval in which the two minif@ag
F(Og, T)=f(OM)+MT; [(k)—1—In({k))]Ds ®,=0, corresponding to the connected state andat 1, corre-
sponding to the dispersed stat@exist is fully compatible with the
®2 numerical findings for the transition regime.
2_ _S
T3k +2] 4 ] (12) very high and very low temperatures is similar to the previ-

ous case: wheid —«, the energy ternf(sya) can be ne-
The simplest choice for an energy function that dependgjlected in Eq(12), and the entropic term has a minimum at
only on the size of the largest component is ®,=0, which is the dispersed state. In contrast, wien
—0, only the energy term remains, resulting a minimum in
f(Smax) =~ Smax= — PsM. (13 F(d,,T) at =1, the compact state. However, there is
also an intermediate temperature range, whef(eg,T)
given by Eq.(12) starts as an increasing functiondat=0
(since the linear term in the entropy dominates for small
d,), then reaches its maximum somewhere in [tbg] in-
, (14)  terval and continues as a decaying function from that point
(k) —1=1In({k)) on (since the higher-order decaying terms in the energy over-
come the increasing terms at largkr). As a consequence,
: SIS ‘ ) the conditional free energy has two competing minima in the
configuration is dispersetsee main panel of Fig.)2When | 1 interval, a metastable and a globally stable. The coex-
the temperature drops belov((k)), the minimum moves jsience of stable and metastable minima at the transition be-

away from®s=0 and a giant component appears. Near th§ een the phases is a characteristic of first-order phase tran-
critical temperaturd (({k)), the order parameter at the mini- sitions. A simple function of this type Hsmax):_srznax_ For
mum of the free energy can be estimated from @@) as this choice of the energy, our numerical results are shown in
Fig. 3. The hysteresis appearing between cooling and heating
(15) supports the_theoretical_considerations about _t_he coexisting
minima that indicate a first order phase transition, summa-
rized in the inset of Fig. 3. The analytical conditional free
indicating that we are dealing with@ntinuous topological energy gained by substituting(Sma) = —S4ay iNto Eq. (12)
phase transitior(see inset of Fig. 2 has a single minimum, whem<80 and whenT>430, in
Topological phase transitions of first order are also exformer case at the dispersed stade,£0), in latter case at
pected to occur for other forms of cluster energies. For exthe connected stateb=1). At intermediate temperatures
ample, wherf (S, starts with a zergor positive slope. In  these two minima coexist, predicting a first-order phase tran-
such a case, the behavior of the conditional free energy afition somewhere in the middle part of this temperature in-

In this case it can be clearly seen from Ef2) that as long
as

T>T (k)=

the free energy has a minimum @t=®3(T)=0, i.e., the

T 1-T (k)

®S(T):2<k)z—3<k>+2 !
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FIG. 4. The order parameter®,=M,/M, for the E
= —Z:\lzclsiz energy. M is the number of edges in the largest com-  FIG. 5. Distribution of the size of the largest graph component,
ponent and\,. is the number of components in a grapBach point Sy, if the E= —Ei’\'jlsiln(s) energy is used. Main panel. At low
shows the value ob aftert=200N Monte Carlo steps in a graph temperatures the distribution of the largest component has one
started att=0 from an Erds-Revyi random grapho) or a star maximum at large values a4, this is the ordered phase. At high
(X). The simulated graph had= 500 vertices andl =125 edges. temperatures, the largest component is small: the graph is disor-
Observe that for intermediate temperatures there are two distawmtered. Inset: Using a higher resolution, one can observe that the
groups of states with high stabilittat ®,~0.6—0.9 and®~0 transition from the low-temperature peaR £7) to the high-
—0.15), and®, values in the region between these two rarely temperature peakT(=9) happens via a bimodal distributiorT (
occur, i.e., a first-order transition was found. =8, indicated by a solid line This indicates that the conditional
free energy of the system has two competing minima at the inter-

. . . mediate temperature, and the transition is of first order. The graphs
terval. The transition regime 1#0T <270 observed in the used for the simulations hald=500 vertices andl =125 edges.

Monte Carlo(MC) simulation is compatible with the analyti- Averages were taken for 1@nain panel or 200 (insed simulation
cal result, since one does not expect the simulation to reve@lns petween simulation times o 200N and t=400N Monte
the metastable state beside its dominant stable counterpart @arlo steps using time steps o N.

case of a very significant difference between the depths of

the according minima in the free energy.

We have also investigated the case 6{Sa0
=—Sn2dN(Snay), bOth analytically and numerically. Similar
to the previous case, it can be shown that there is a temperg
ture regime, where the conditional free energy as a function
of ®¢ has two competing minima, hence the transition is of
first order.

Since the energf = f (s depends on a global quantity
(the size of the largest connected compohémhight be also
reasonable to define the energy of the graph Es
=2,f(s;), where the summation goes over each component
ands; denotes the number of edges in fftke one. The total
number of edgesM =Z;s;, is conserved by the dynamics,
hencef (s;) must decrease faster than linear to promote com-
pactification. When a single giant componéedntaining the
majority of the edgesemerges, its energy(Sya) dominates
the energy of the entire graph, and, as a good approximatio
the above analysis fdE = f(s,,,,) can be repeated, leading to
first- order and continuous phase transitions. For the case of
E= —E sI , our numerical results are presented in Fig. 4,
showmg a first-order phase transition.

For theE= —EiN;lsiIn(sq) energy—similar to the case of
the E= — s,2dN(Snay €nergy—we found a first-order transi-
tion between the ordered phageesent at low temperatudes wherei’ runs over all vertices that are neighbors of veiitex
and the disordered phaghigh temperaturgs Results are In this interpretation, the fitness of an individual vertex de-
shown in Fig. 5. pends on the connectivities of its neighbors and veirtex-

V. SINGLE-VERTEX ENERGY FUNCTIONS

Next we turn to another important class of the energy
functlons where the energies are assigned to the vertices
father than to the connected components of the graph:

N
121 f(k), (16)

wherek; denotes the degrdaumber of neighbopsof vertex

This energy is consistent with a dynamics in which the
change of the degree of a vertex depends only on the struc-
ture of the graph in its vicinity. The fitness of an individual
vertex depends on its connectivity. The most suitable order
parameter for this class of graph energy ®&=®,
=Kkmnax/M. Again, due to the conservation of the number of
ﬁdges M=Zk;, the single-vertex energf(k;) should de-
crease faster than k; , if aggregation is to be favored.

We introduce an alternative form for single-vertex ener-

N
=2, 2 g(ki), (17
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lects an energyg(k;:) from each of its neighbors. These cannot be fulfilled, since the total number of sites scales as
neighbors in turn will all collecg(k;) from vertexi, there- N2, whereas the number of particles scaleshVasvith the
fore the total contribution to the energy from vertexs  system size.

kig(k;). Thus, by using For the particular form of (k;) chosen, the topology with
the lowest overall energy is a “starfor simplicity, we con-
f(ki)=kig(ki), (18 siderM <N), where all theM edges are connected to single

node. The form of the conditional free energy in this case can
be estimated as follows. In th®,>1/2 regime, where the
system contains a star of size larger ttr2, the energy of
this star dominates the rest of the graph. Therefore, in the
thermodynamic limit, we neglect this latter contribution to
A natural choice for the energy of single-vertex type is thethe total energy and approximate the energy of the graph by
following. Assign the negative energy J to all pairs of that of the largest star. Now we estimate the number of pos-
edges that share a common vertex at one end. The total egible configurations for a given value &, . In case of a star
ergy of a given configuration is then with K=® M arms, the central vertex can be chosen fiem
different vertices. Once this is fixedk edges have to be
distributed among thdl—1 possible links between the other
vertices and the central one, yielding a factoNbf 1 over
K. The rest of the edges that are not part of the star can be
corresponding tof(k))=—(J/2)k? [or equivalently, to placed anywhere between tié—1 (noncentral vertices,
g(ki)=—(J/2)k;]. The constant term in Eq19) does not contributing a factor of l—1)(N—2)/2 over (M —K):

play any role in the dynamics, hence it can be omitted. This N—1|/(N=1)(N—2)/2 B (N N2/2
M-k ~Nik/Im-k/
(22)

the two alternative forms of the single-vertex energy, Eqs
(16) and(17), become equivalent.

A. The energyE=—2ki2: Mapping to the Ising model

N
2 ki(ki—1)= 2 k2+1JM (19)

form of the energy is in full analogy with the usual definition N K) =~
of the energy K

E=-J E N,Ng (200  Again, we use Stirling’s formula to approximate the factori-
) als, and neglect terms @(In N) yielding

of a lattice gas on the edge-dual graph of the fully connected N N N2 N2 N N
network with nearest-neighbor attraction. The summation In Ng,~M In—+mlnm—( —@k)ln(m—tbk)
here runs over all adjacent pairs of lattice sitesrrespond-

ing to possible edges between the vertices of the original — P Un®,—(1—Pp)In(1— D)

graph and n,=1 if site a is occupied and O otherwise.

When this energy is applied to lattices, we recover the stan- N2 N2

dard lattice gas model of nucleation of vapors. The negative oM 140y In —14d (23

energy unit—J associated with a pair of edges sharing a

vertex in the original graph is equivalent to the binding en-In the thermodynamic limit, to leading order we receive
ergy between the corresponding occupied nearest-neighbor

sites on the edge-dual graph. By measuring the enefaies In Nstaf X)~ — @M In(N), (24)
temperaturgin units of J we can setl=1, without losing
generality. Thus, from now od will be omitted.

The lattice gas representation can be further transforme
to an Ising-model representation by introducing thg F(®,, T)~f(®M)+D,MTIn(N). (25)
e[—1,1] spinlike variables connected to, as n,=(1 '
+s,)/2. The energy with the help of the spins is expressedn the present case, with thiék;) = — k? energy, Eq(25) can
as be written as

where thed, independent terms were dropped. The resulting
8onditional free energy is expressed as

1 1 N(N-1)/2
E=—7 D SaSg—5 2 Sa— zN(N—1)(N—2),
(@B 2 &1 8 . N .
(21) Note that this approximation would be _vahd even oy
<1/2, if the energy of the graph was simply definedEas
since the total number of lattice sites equalN—1)/2, and = f(Kmay-
the number of adjacent pairs of lattice sitesNEN—1)(N The parabola given by Eq26) has a maximum ath,
—2)/2. This is similar to a ferromagnetic Ising model in an =T/M In(N). WhenT—0, this maximum also shifts towards
external magnetic field. If the number of occupied sites in thezero andF(®,,T) becomes a descending parabola on the
lattice gas picture equals the number of unoccupied sites, tHé®,1] interval. This means that the minimum of the free en-
contribution from the external magnetic field vanishes in theergy is atb,=1, the star configuration. In contrast, when the
Ising-model picture. However, in the thermodynamic limit, temperature goes above thig=M/In(N) spinodal point
where N—oo,M—w (ky=2M/N=const, this condition (thick solid line in Fig. §, the maximum moves out of the

F(®y, T)=M[— DM+ D, T In(N)]. (26)
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FIG. 6. The order parametd =, =k,,,/M as a function of

the temperature and the system size Br3;—k%2 and (k) —~110
=0.5. The simulations were started either from a &tarrespond-

ing to T=0, solid line or a classical random grapf €, dashed

line). Each data point represents a single run, time averaged be
tweent=100N and 200N Monte Carlo steps. The thick solid line -118
shows the analytically calculated spinodgl=M/In(N).

-150

[0,1] interval and the free energy becomes an ascending pa
rabola, resulting in a minimum at a low value @f, (corre-
sponding to an ER random graplidowever, this value can- -170 |
not be deduced from Eq(26), because it is a valid
approximation only for®,>1/2. For intermediate tempera-
tures the maximum of the parabola separates the two extrem
topologies: the dispersed random graph and the star. One ¢ -190
these two extreme states is metastable and the other one
stable. Due to the limited validity of E@26), the stability of
these configurations can be studied only for temperature: 0 02 0.4 0.6 0.8 1
where the maximum of the parabola is well inside the Dy
[1/2,1] interval. ] - ]
The scenario of the transition from a dispersed state to the F!G: 7. The picture of the conditional free energy at three dif-
star configuratiorisee aboveindicates that it is dirst-order  '€rent temperatures for thi(k;) = —ki" energy, obtained from the
phase transitionThis is well supported by the results of both exact enumeration method plotted together with the prediction of

the exact enumeration method and Monte Carlo simulation%?ur:e:":"ge t%e ?Sre;'cdaelsacgilgﬁq'z ffﬂ‘ln:ttzn’N;ﬁéAlg l\mhtzmg%a'
ks ] -

F_or small systems, the (_:onditional free energy was eV‘Fj‘lu"’lteraum at®,=1, the star configuratioftop figure, on the other hand
via the exact enumeration method for various temperatureg,, high temperatures, it becomes ascending for most part, with a

and was found to be in qualitative agreement with the Preminimum at lowd,, the dispersed statésottom picturg. There is

diction of the theoretical analysis, as demonstrated in Fig. 7, intermediate temperature regime in between, where the maxi-

The three different temperature regimes described in the preaym of (@, ,T) separates two competing minirfraiddile figure,

exact F(®,,T) as well. Furthermore, in the intermediate
temperature regime, where the conditional free energy haseighbors can sense and benefit from. In this case the con-
two competing minima, the spinodal curve can also be configuration with the lowest energy is a fully connected sub-
structed as is shown in Fig. 8. For large enough systems, igraph[or almost fully connected iM cannot be expressed as
MC simulations a sudden change of the order parameter be{n—1)/2]. On the other hand, the star configuration is also
tween zero and one can be observed as shown in Fig. 6. Thite favorable, since the energy of both the maximal pos-
hysteresis appearing between cooling and heating is consisible star and of the maximal possible fully connected sub-
tent with a first-order transition. graph scales as M In M to leading order. Amongst the sub-
dominant terms in the energy, there is a difference in the
order of VM InyM between the two, in favor of the fully
connected subgraph. As before, we choose the order param-
Another application-motivated choice for the single- eter to bed =, =k,,./M, since this can easily distinguish
vertex energy isf(k;)=—k;ln(k), or equivalently, g(k;) between these two configurationls;,,~+2M for a fully
= —In(k), inspired, in part, by the logarithmic law of sensa- connected subgraph countifd edges, and,,,,~M for a
tion. It is the logarithm of the degree of a vertex that itsstar.

B. The energyE=—X=k;In k;: Continuous phase transition
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FIG. 8. The spinodal curve obtained from the exact enumeration
method withE= —3;k?, for M=12N=48. At low and high tem-
peratures, the conditional free energyd,,T) has a single mini-
mum (plotted with squares At intermediate temperaturd@m be-
tween the two dotted lingshere are two competing minima. In this
latter temperature regime, the spinodal curve is obtained by plotting X ‘ () ‘. \ ~
the maximum ofF(®,,T) (represented by starsbesides the two — ‘BN
minima.

FIG. 9. Phases of the graph when the energy Hs

Our MC simulations demonstrat&ig. 9) that as we cool = —=s kiIn(k). (a) The largest degrek,., for N=10 224 vertices
down the system, first the edges of the dispersed randoghd M = 2556 edges. Each data point represents a single run, time
graph assemble to form a configuration with a few large stargveraged between=5000N and 20008l MC steps. The data
(sharing most of their neighbdrsand then at lower tempera- points are connected to guide the eye. There is a sharp, continuous
tures the graph is rearranged into an almost fully connectegansition neaT=0.85 and a first-order transitiofwith a hyster-
subgraph. This is consistent with the fact that besides thesig around T=0.5-0.6. (b) The three different plateaus if@)
slight energetical disadvantage, the star configuration is ercorrespond to distinct topological phaskg;,,=0(1) to the classi-
tropically more favorable when compared to the fully con-cal random graphk,.,.=0(M) to the star phasé small number of
nected subgraph; therefore the latter configuration can takstars sharing most of their neighbprand ky,,,=0(yM) to the
over only at very low temperatures. The hysteresis near thiilly connected subgraplic) The (cumulative degree distribution
few large star vs fully connected subgraph transition sugges®& T=0.84 andt=600N follows a power law. This shows that the
that it is a first-order phase transition. On the other hand, théegree distribution decays as a power law with the expoper&.
transition between the dispersed state and the few large stars . o .
is accompanied by a singularity in the heat capaéitigo scale-free grapkwith a degree dlstr|put|orrk Y with y=3)
seen with the exact enumeration methathd no hysteresis 2PPears at some point of the evolution of the graph from the
is observed, indicating that it is @ontinuous phase transi- rgndom configuration towards the star. This supports the no-
tion. tion that scale-free graphs are temporégynamical con-

For ®,>1/2 Eq.(25) can be used again as a good alo_f|gurat|_ons_, not typical in equilibrium distributions. The M_C
proximation for the free energy of the graph, since the comdynamics is governed by the change of the energy associated
pact cluster arising from the dispersed state is rather star likd/ith the reallocation of an edge. Estimating the energy
By plugging f(®M)=—(®M)In(®M) into that expres- change of a vertex by the derivative of the smgle_—verte_x en-
sion, we get _ergyf(ki)= —kiln(k;), we getAE=1-—In(k). Plugging this

into the Boltzmann factor, exp AE/T], atT=T.=1 we get
F(®,,T)~M(T—1)In(N)D (27) a quantity proportional td; for the acceptation/rejection ra-

) S ) ) tio of a randomly selected move. Since the preferential at-
to leading order, which is linear i, . In agreement with  achment in the BarasaAlbert model[4] is proportional to
our observations above, this formula predicts thaterl . it is natural that our dynamics also produces scale-free
the star is a stable configuratiop(=1 is a minimum of the  graphs
free energy, and forT>1 it becomes unstable. The transi- = Another interesting aspect of tHék;) = —k;Ink energy
tion atT=T.=1 is thus steplike with no hysteresis, indicat- js that the configurations in the two compact phases resemble
ing a continuous phase transition with an infinitely largetne two major graph topologies obtained in REE8], by
critical exponent. We assume that the observed deviation Qfptimizing the network for local search with congestion. Our
T from 1 in the MC simulations is a finite size effect. intermediate phase with a few large central hubs sharing
neighbors is similar to the optimal topology for a small num-
ber of parallel searches, whereas the low-temperature con-

A remarkable feature of the MC dynamics is that in casefiguration, the fully connected subgraph resembles the homo-
of the energyf(k;)= —k;Ink;, by crossingT. from above, a geneous topology optimal for a large number of parallel

C. Relation to growth with preferential attachment
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searches. However, an important difference between the twi@mperature. We have to stress though that the scale-free net-

problems is that in our case a vertex is allowed to lose all ofvork at T, is not general: foru>1 the tail decays exponen-

its connections under the restructuring process. The twdally and for u<1 the tail diverges.

“similar-to-optimum” configurations appear as a natural

consequence of the underlying dynamics. This observation VII. SUMMARY

suggests a potential application of the presented theory: tack- '

ling problems related to graph topology optimization by We studied the restructuring in networks using a canoni-

simulated annealing techniques. cal ensemble, where temperature corresponds to the level of

noise in real systems and the energy associated with the dif-

D. Topology-dependent nonextensiveness of the energy ferent configurations accounts for the advantage gained or

lpst during the rewiring of the edges. We found that for vari-

us types of energies, first order and continuous phase tran-

itions may appear when changing temperatures. In case of

e E=—s. energy, if (k)<1, a dispersed-loose phase

Both types of the single-vertex energy functions discusse
in the present section lead to compact configurations at Iovg
temperatures, for which the most highly connected vertice
B S Ol cudes, e @ ConseaUeMhnsition occurs at a fine temperature, equivalent to the

) . . 8 rcolation phase transition of classical random graphs when
high and low temperaturesand diverges differently abl i

. ' k) is varied aroundk)=1. We obtained a simple expres-
—e. At high temperature, the system consists of many smal ion for theT((k)) critical line separating the two phases

unlinked clusters of about the same size, therefore a chan . :
in the total system size affects only the number of the clus%ei the[(k),T] plane from a theoretical analysis of the con

ditional free energy. For other forms of the energy depen-
ters, fnd the energy scales s On the other hand, when ding on the size of the largest cluster we found first-
f(k;) = —k;In(k;), at low temperatures the energy of the star

- order phase transitions. We also studied the effects of dif-
and the fully connected subgraph scaledNda(N); in case ferent sinale-vertex eneraies. namelv. e — k2 and E
of f(kj)=—k?, the energy of the star scales B4. Thus g gees, Y, i

(unlike, i.., in the mean-field Ising modethere isno way = —2;kiIn(k)) cases. The network in the former case exhibits

. . a first-order phase transition from a dispersed state to a star-
to choose an appropriate coupling constant that could render;

the energy extensive in all topological states simultaneously“ke state, where nearly all edges are linked to a single ver-
Nevertheless, the dispersed stdteving an extensive tex. With the = 2;kiln(k) energy, the dispersed state trans-

raph energycan equally be studied in the grand canonicallcorms into a compact one with a few large stars via a
gns?amble 9 qually 9 continuous phase transition. In the critical point, scale-free

networks can be recovered. At lower temperatures another
transition occursthis time of first order, where the configu-
ration is turned into a fully connected subgraph.

In the grand canonical ensemble, the degree distribution Although in this paper we assumed tijg}<1, this is not

VI. THE GRAND CANONICAL ENSEMBLE

can be expressed f%1] a necessary requirement, when the energy is assigned to in-
dividual vertices. For large average degréle)¢2) the only

e~ ATk — uk difference is that one vertex cannot collect all the edges, and

Pi=C— 7 (28)  thus, several stars appear in the star configuration. Further

interesting directions in the context of the above study in-
(Clude the investigation of additional relevant forms for the
energy[e.g.,E=(k—n)? with n>1.5] and the joint effects
of restructuring and growth.

whereC is a normalization factor and the chemical potentia
w is adjusted to give the corre¢k). For f(k)=—kIn(k),
using Stirling’s formula, the distribution takes the form

g (u—1)k ACKNOWLEDGMENTS
Py=C———kXT 1k (29) . .
27k The authors are grateful to Gar Tusnaly for many valu-
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WhenT>1, this has a tail, which decays faster than expo-Hungarian Scientific Research Fund under Grant No. OTKA
nential, consequently, each vertex has a small degree. FOB4995. I.F. acknowledges financial support from the Com-
T<1, on the other hand, the tail becomes divergent, signalmunication Networks Laboratory at ELTE.
ing a phase transition ai=T.=1. Note however that in
the T<1 temperature range, due to the nonextensive contri-
bution of the diverging degrees, the ensembles are not
equivalent, and the grand canonical description loses its In the exact enumeration method, as mentioned in Sec.
validity. IIIA, the first step is to generate all connected graphs with
At the critical temperature, the grand canonical descripm+ 1 edges from the connected graphs witledges, either
tion might still be valid. Choosing a more general single-by connecting a new vertex to the core or by introducing a
vertex energyf (k) = — (ki— a)In(k), and setting(k) such  new link. In order to avoid double counting, every new graph
that =1, the degree distribution acquires a power law tailobtained this way is compared one by one to all already
(P~k~(@T12)y and the network becomes scale-free at thisrevealed topologies using the following algorithm. Two

APPENDIX A

046117-10



STATISTICAL MECHANICS OF TOPOLOGICAL PHAE . .. PHYSICAL REVIEW E 69, 046117 (2004

graphs of identical topology have identical degree distribu- To provide a simple example of an application, we show
tion also, therefore this property is checked first. In case othe first few most probable states in casdeef — >k;Ink; at
perfect match, the vertices in both graphs are labeled in such=0.65:
a way that a given index belongs to vertices with equal
number of links in the two graphs. Next, for each index

p~0.009216 |} p=0.009164 || p=0.006836 }| p=0.006177 || p~0.005798 {| p=0.005495 || p=0.005363 || p~0.005209

in one graph, the set of the neighbor indices is compared

to its equivalent index set in the other graph. If not all sets o;% gg % &% I%% % g@ @

are identical, then the labels in one of the graphs have t

be permuted until perfect match between the neighboring pe0.005097 || p=0.005026 || p~0.004886 || p=0.004608 || pe0.004557 || p=0.004497 || p=0.004370 || p=0.004321

relations is reached(Obviously, labels are interchanged

between vertices of same degree onlfythe perfect match % &E %&) % %X& gg’ % %

in the neighboring relations cannot be achieved for any per-

mutation of the indices, the two graphs are of different to-

pology. When the temperature is lowered 16=0.3, these are
When a new topology is obtained, the correspondingeplaced by the following graphs:

combinatorial factors can be generated in a similar manner,

by counting the number of permutations of the indices in the

graph that lead to the same neighboring relaticjsname p=0.269482 || p=0.200205 || p=0.086238 || p=0.034994 || p=0.032251 || p=0.029560 || p=0.027784 || p=0.024282

neighboring index setsas the original indexing. @7 $ @ $ @ g& @ M
As a simple example, we demonstrate the evaluation of

N, for all states in case df1 =3 N=6. The construction of | oo || po020ss7 || p-00ess || p-o01a915]| p0013892 || po013758 || peciorzaro || peo0riz7a

the connected graphs and the possible topologies are show
below: % g@
i 1) 2)
! i I I i A APPENDIX B

j\o = K ? For simplicity, we shall consider treelike clusters only and
PN TR D/& N A) neglect the clusters with loops. Since the chances of a com-
N A ponent containing a closed loop of edges goellas when
(k)<1 and no giant connected component can be found in

the system, this is a valid approximation in the thermody-

In case of a topology that does not possess any symmé‘-amic limit[31]. The number of possible trees of sgm an
tries, A is simply N!/(N=N,)!, whereN, is the number of undirected network can be estimated as follows. We pick a

vertices included in the topology. In general this init\dhas ~ random realization of a tree sizedmeanings edges ands

to be further divided by the number of those permutations of 1 Vertices, and we choose a vertex in it to be the “root” of
the indices of the vertices that leave the topology unchanged® tree. Starting from this root, we descend through all pos-
Therefore, if the topology contains identical subgraphs SiPle paths until we reach all the branches, and on the way
(such as in case of state=1 above, where the topology is € replace the undirected edges with directed ones pointing
built up from three identical subgrapttse initial value of\” from the vertex closer to the root towards the vertex farther

has to be divided by!. Furthermore, if any subgraph in the away from the root. This procedure results in a directed
topology remains unchanged fbpermutations of the indi- tree, where each vertelexcept the rogthas one and only

ces within itself, " has to be divided by. In the example one incoming edge amek=0 outgoing edges. Then, another
above, for the statew=1 and @=2, for all subgraphsl real|zat|or_1 of a tree can be ob';amed from the present one
—2. in case of the states=3 anda=5, |=3!, and for the by choosing a vertex, and moving the other end of the in-

statea—=4, 1= 2. coming edge from its original place to a new vertex. Of
Altogether, in the chosen casa/ of the five possible course, this new vertex cannot be one of the “descendants”
states can be expressed as of the s_elected vertex, since that way we would create a loop
and split the tree into two unconnected parts. Nevertheless,

NI NI if sis large enough, for the majority of the vertices this
Ny=——, =, restriction eliminates only a negligible part of the possible
(N—6)12%3! (N—5)122 rewirings. Therefore we may estimate the number of possible
new trees obtained from the rewiring of the incoming edge
N N! N, = N! Nom N! of a single vertex by, and the total number of trees of size
ST(N=4)131" 4T (N=4)12° ST (N=-3)!13!" s by s°.
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