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Statistical mechanics of topological phase transitions in networks

Gergely Palla, Imre Dere´nyi, Illés Farkas, and Tama´s Vicsek
Biological Physics Research Group of HAS and Department of Biological Physics, Eo¨tvös University,

Pázmány P. setany 1A, H-1117 Budapest, Hungary
~Received 24 September 2003; published 29 April 2004!

We provide a phenomenological theory for topological transitions in restructuring networks. In this statisti-
cal mechanical approach energy is assigned to the different network topologies and temperature is used as a
quantity referring to the level of noise during the rewiring of the edges. The associated microscopic dynamics
satisfies the detailed balance condition and is equivalent to a lattice gas model on the edge-dual graph of a fully
connected network. In our studies—based on an exact enumeration method, Monte Carlo simulations, and
theoretical considerations—we find a rich variety of topological phase transitions when the temperature is
varied. These transitions signal singular changes in the essential features of the global structure of the network.
Depending on the energy function chosen, the observed transitions can be best monitored using the order
parametersFs5smax/M, i.e., the size of the largest connected component divided by the number of edges, or
Fk5kmax/M, the largest degree in the network divided by the number of edges. If, for example, the energy is
chosen to beE52smax, the observed transition is analogous to the percolation phase transition of random
graphs. For this choice of the energy, the phase diagram in the (^k&,T) plane is constructed. Single-vertex
energies of the formE5( i f (ki), whereki is the degree of vertexi, are also studied. Depending on the form
of f (ki), first-order and continuous phase transitions can be observed. In case off (ki)52(ki1a)ln(ki), the
transition is continuous, and at the critical temperature scale-free graphs can be recovered. Finally, by abruptly
decreasing the temperature, nonequilibrium processes~e.g., nucleation and growth of particular topological
phases! can also be interpreted by the present approach.

DOI: 10.1103/PhysRevE.69.046117 PACS number~s!: 89.75.Hc, 05.70.Fh, 64.60.Cn, 87.23.Ge
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I. INTRODUCTION

In recent years, the analysis of the network structure
interactions has become a popular and fruitful method u
in the study of complex systems. Whenever many sim
objects in mutual interactions are encountered, these ob
can be represented as nodes and the interactions as
between the nodes, defining a network. The World W
Web, the science citation index, and biochemical reac
pathways in living cells are all good examples of comp
systems widely modeled with networks, and the set of f
ther phenomena where the network approach can be us
even more diverse. In most cases, the overall structur
networks reflect the characteristic properties of the origi
systems, and enable one to sort seemingly very different
tems into a few major classes of stochastic graphs@1,2#.
These developments have greatly advanced the potenti
interpret the fundamental common features of such dive
systems as social groups, technological, biological, and o
networks. The effects of both the restructuring@3# and the
growth @4# of the associated graphs have been conside
leading to a number of exciting discoveries about the la
concerning their diameter, clustering, and degree distr
tion. Real networks typically exhibit both aspects~growth
and rearrangement! one of which is usually dominating th
dynamics. Here we concentrate on the evolution of gra
due to restructuring, but shall briefly discuss the growth
gime as well.

Various interesting effects observed in networks can
interpreted using analogies with well understood phenom
studied in statistical physics. As a classical example,
mention the percolation phase transition in the Erdo¨s-Rényi
1539-3755/2004/69~4!/046117~12!/$22.50 69 0461
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~ER! random graph model@5,6#, which occurs by varying the
average degreêk& of the vertices around̂k&51. For ^k&
,1 the graph falls apart into small pieces, on the other h
for ^k&>1 a giant connected component emerges~in addi-
tion to the finite components!. Another subtle example is th
mapping of a growing network model onto an equilibriu
Bose gas@7#. For the latter model, under certain conditions
single node is allowed to collect a finite fraction of all edge
corresponding to a highly populated ground level a
sparsely populated higher energies seen in Bose-Eins
condensation.

When connecting the graph theoretical aspects of n
works to statistical physics, one can step further from
analogies by directly definingstatistical ensembles fo
graphs. The use of a statistical mechanical formalism for t
changes in graphs being in an equilibriumlike state is
pected to provide a significantly deeper insight into the p
cesses taking place in systems being in a saturated state
as such, dominated by the fluctuating rearrangements of l
between their units.

As an example, let us take a given number of units int
acting in a ‘‘noisy’’ environment. These units can be peop
firms, genes, etc. The probability for establishing a new
ceasing an existing interaction between two units depend
both the noise and the advantage gained~or lost! when
adopting the new configuration. In this picture, a global tra
sition in the connectivity properties can occur as a funct
of the level of noise. For instance, if the conditions are su
that the interactions between the partners become m
‘‘conservative’’ ~safer choices are more highly valued!,
then—as we show later—a transition from a less ordered
more ordered network configuration can take place. In p
©2004 The American Physical Society17-1
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ticular, it has been argued@8# that depending on the level o
certain types of uncertainties~expected fluctuations! business
networks reorganize from a starlike topology to a system
more cohesive, highly clustered ties.

There are several possible ways to define the statis
ensemble of networks. In Refs.@9,10#, the members of the
ensemble were identified by the Feynman diagrams of a fi
theory in zero dimensions~called ‘‘minifield’’ !, and the
weights of the graphs were given by the corresponding
plitudes calculated using the standard Feynman rules.
ensemble obtained this way was characterized by the fra
and spectral dimensions, and the dependence of the topo
of the graphs on these two parameters was discussed.
authors argued that in the parameter plane of two parame
related to the fractal and spectral dimension, the region
generic graphs and the region of crumpled graphs are s
rated by a line; and on this separating line scale-free
works appear. An alternative definition for the partition fun
tion was proposed by Berg and La¨ssig in Ref.@11#, resulting
in a simpler formalism, analogous to the statistical mech
ics of classical Hamiltonian systems. They introduced
Hamiltonian for networks, and also a parameterb playing
the role of inverse temperature. The weights of differe
graphs in the partition function were obtained from these t
quantities as in classical statistical mechanics. These stu
showed that Hamiltonians beyond the single-vertex fo
~where terms depending on connectivities between the v
ces also appear! lead to correlations between the vertices
large b. A similar model leading to interesting results w
presented in Ref.@12#, where the Hamiltonian depended o
the ratios of the degrees of neighboring vertices, and
dynamics favored disassortative mixing and high clusteri
The system organized itself into three phases dependin
one parameter: the exponential, scale-free, and hub-le
states were produced, respectively. However, the nonunif
selection of links at the rewiring in this model makes it im
possible to satisfy the detailed balance condition.

In this paper we analyze the reorganization of netwo
from the point of view oftopological phase transitions, i.e.,
transitions in the graph structure as a function oftempera-
ture, the quantity representing the level of noise during
restructuring process of the network. For clarity we note t
our studies concern a class of phenomena that are cle
different from the phase transitions investigated by apply
models of statistical mechanics originally defined on regu
lattices to an underlying~static! random network structure
@13–15#, or the phase transitions observed in growing n
works@7,16#, or quasistatic networks@17#. Topological phase
transitions are accompanied by singularities in the thermo
namic functions derived from the partition function of th
statistical graph ensemble and can be characterized b
drastic change in an appropriate order parameter. Our st
tical ensemble~similar to the one presented in Ref.@11#! is
defined by introducing anenergythat accounts for the advan
tage or loss during the rearrangement. In our description,
energy may depend on either global properties of the
work or single-vertex degrees.

The use of Hamiltonian formalism also provides a gene
frame for the optimization of network structure~for ex-
04611
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amples of network optimization problems see Refs.@18,19#!.
To find the optimal configuration for a given task, the syste
has to be cooled, using an appropriate energy function.

This paper is a direct extension of our previous work@20#;
covering more details, results, and different approaches.
paper is organized as follows. In Sec. II we define the
nonical ensemble of the networks together with the partit
function and other essential thermodynamic quantities.
Sec. III we discuss the numerical methods used to study
phase transitions. In Sec. IV we present the phase transit
obtained for energies that depend on global properties,
Sec. V is devoted to two interesting cases of single-ver
energies. In Sec. VI we discuss briefly the grand canon
ensemble of networks and we conclude in Sec. VII.

II. STATISTICAL MECHANICS OF NETWORKS

We shall consider a set$ga% of undirected graphs, con-
taining N nodes andM links. Each graphga can be repre-
sented by theadjacency matrix Ai j

a , whereAi j
a 51 if vertices

i and j are connected and it is 0 otherwise. In a heat bath
temperatureT, the canonical ensembleof these graphs~in
analogy with that proposed in Ref.@11#! can be defined by
the partition function

Z~T!5(
$ga%

e2Ea /T, ~1!

whereEa is the energy assigned to the different configu
tions.

The restructuring processes of the network can be in
preted via the following physical picture: The basic event
rearrangement is the reallocation of a randomly selected e
~link! to a new position either by ‘‘diffusion’’~keeping one
end of the edge fixed and connecting the other one wit
new node! or by removing the given edge and connecti
two randomly selected nodes. Then, the energy differe
DEab5Eb2Ea between the originalga and the newgb con-
figurations is calculated and the reallocation is carried
following the Metropolis algorithm@21#. If the energy of the
new graph is lower than that of the original one, the real
cation is accepted; if the new energy is higher, the reallo
tion is accepted only with probabilitye2DEab /T. This way, in
the T→` limit the dynamics converges to a totally rando
rewiring process, and thus, the classical ER random gra
are recovered. On the other hand, at low temperatures
topologies with lowest energy occur with enhanced proba
ity. The resulting dynamics, by construction, satisfies the
tailed balance condition@21#.

This network rearrangement is formally equivalent to
Kawasaki-type lattice gasdynamics with conserved numbe
of particles moving on a special lattice, which is the edg
dual graph of the fully connected network@6,22#. The sites of
this lattice are the possibleN(N21)/2 connections betwee
the vertices, and the particles wandering on the sites are
M edges, as shown in Fig. 1.

The partition function~1! contains many terms corre
sponding totopologically equivalentgraphs: these graph
can be simply transformed into one another by an adeq
7-2
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permutation of the indexing. Since we consider energiesEa
that depend only on the topologyta , it is natural to rewrite
the partition function in a form where the summation ru
through all possible topologies:

Z~T!5(
$ta%

N ae2Ea /T. ~2!

Here we introducedNa to count the number of configura
tions belonging to topologyta . Expression~2! can be rewrit-
ten as

Z~T!5(
$ta%

e2Ea /T1 ln(Na)5(
$ta%

e2Fa /T, ~3!

Fa5Ea2TSa , ~4!

Sa5 ln~Na!, ~5!

where Fa is the free energy andSa is the entropy of the
topology ta .

We are interested in the possible singularities in the th
modynamic functions derived from the partition functio
above, since they, if there are any, correspond to phase
sitions in the topology of the associated networks. Th
transitions can be best monitored by introducing a suita
order parameter. As we are primarily interested in the tran
sitions between dispersed and compact states, a na
choice can be eitherF5Fs5smax/M, the number of edges
of the largest connected component of the graphsmax nor-
malized by the total number of edgesM, or F5Fk

FIG. 1. Two simple examples of graphs~left-hand side! and the
corresponding edge-dual graphs~right-hand side!. The full spheres
in the edge-dual graphs represent occupied sites, correspondi
existing bonds in the original graph~drawn with solid lines!, and
the hollow spheres are the empty sites, corresponding to ab
bonds~represented by dashed lines! in the original network. The
rewiring of an edge in the original graphs is equivalent to the d
placement of the corresponding particle on the edge-dual grap
04611
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5kmax/M, the highest degree in the graphkmax divided byM.
We also introduce the corresponding conditional free ene
F(F,T) via

e2F(F,T)/T5Z~F,T!5 (
$ga%F

e2Ea /T, ~6!

where$ga%F is a subset of$ga%, consisting of all the graphs
with order parameterF. A phase transition, where a rapi
change occurs in the order parameter fromF50 towards
higher values, is also accompanied by a shift of the minim
of the conditional free energyF(F,T). A sudden change in
the position of the global minimum signals a discontinuo
~first order! phase transition, whereas a gradual shift in
cates either a crossover or a continuous phase transition

In the following section we briefly discuss the numeric
methods used to study topological phase transitions.

III. NUMERICAL METHODS

A. Exact enumeration method

The numerical results shown in this paper were obtain
by two alternative methods. Motivated by the success o
similar approach used in random walks, percolation, a
polymer related problems@23–26#, for small systems we
evaluated the partition function together with the probabil
of every individual state via anexact enumeration method. In
this approach, first all possible connected configurations w
a given number of edges are generated successively up tM:
the graphs withm11 edges are constructed from the grap
with m edges either by linking a new vertex to one of the o
vertices or by linking two previously unconnected vertice
Next, all possible configurations containingM edges are ob-
tained from the combination of smaller connected grap
with sizes up toM. Finally, Na is calculated for each topol
ogy ta by counting the number of possible permutations ch
sen to label the vertices in the state.~For more details and a
simple example, see Appendix A.! The probabilitypa , of a
topology ta , then can be obtained from

pa5
N ae2Ea /T

Z
. ~7!

Once the set of possible states with appropriate probabil
has been constructed, one can evaluate the expectation
of any Q thermodynamic quantity using

^Q&5(
ta

Q~ ta!pa . ~8!

The advantage of this technique, besides producing e
results, is that the set ofNa has to be calculated only once
independent of the energy functions considered, in cont
to Monte Carlo simulations, where the simulation has to
restarted from the beginning every time we introduce a n
type of energy. This method is limited by the rapid growth
the number of topologies withM. For networks of size seen
in the real world (M.102) the realization of this method is
clearly unfeasible.
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B. Monte Carlo simulations

The lattice gas model defined on the edge-dual graph
the fully connected network relaxes slowly, because inter
tions are dense@27# and the energy minima are sometim
localized in hardly accessible parts of the phase space o
system. A good example is the transition from a class
random graph—stable at high temperatures—to a star, w
is stable at low temperatures. The simplest Monte Carlo
wiring simulation~discussed in Sec. II! tries to move a ran-
domly chosen edge to a randomly chosen new locat
However, this method is very inefficient, if one would like
simulate the condensation of edges into a star in a la
system.

There are several simulation tools that can help to ach
faster convergence. We have used the so-called parallel
pering~also called exchange Monte Carlo! method in severa
cases@28#. Except for first-order transitions, this algorith
can be used well to measure the transition at an accep
speed and high precision.

The algorithm can be viewed as an improved version
simulated annealing. Several replicas of the system are s
lated simultaneously, and each of them is connected
separate heat bath. A replica in a hot heat bath will expl
the ‘‘large-scale’’ structure of phase space, and the motion
a replica in a cold heat bath will be restricted to a small p
of phase space, where it will explore the deep but narr
energy wells.

In the exchange Monte Carlo method, after a given nu
ber of conventional update steps within each replica,
change steps are made. Two replicas~with neighboring tem-
peratures! are chosen at random, and a Monte Carlo–ty
decision is made whether the two replicas should be
changed, i.e., their temperatures should be swapped.
Metropolis dynamics, if the product of the energy differen
between the two replicas (DE) and the difference of invers
temperatures (Db) is positive, then this exchange is a
cepted, otherwise it is accepted only with probabilityeDb DE.
That is, a replica with a high energy and a low inverse te
perature~i.e., high temperature! will be more likely to re-
main in its own heat bath, whereas a replica with a h
energy and a high inverse temperature~i.e., low temperature!
will be likely to be ‘‘put’’ into a heat bath with a highe
temperature.

We shall now move on to review some of energy fun
tions, which lead to phase transitions when the tempera
is changed from zero to infinity at constant^k&. Since atT
5` the entropically favorable graphs dominate, a minimu
requirement for the energy function is that the configuratio
with the lowest energy must also have low entropy. We
vide the investigated energy functions into two categories
the first category we put the energies that depend on com
nent sizes in the graph, the other group contains the sin
vertex energies.

IV. CLUSTER ENERGIES

As mentioned in the Introduction, the classical rando
graph model~corresponding toT→`) exhibits a phase tran
04611
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sition when the average degree of the vertices,^k&
52M /N, is varied around̂k&51. For ^k&,1, the network
consists of small, disconnected clusters, on the other h
for ^k&>1 a giant connected component emerges in
graph collecting a finite portion of the edges. Near the cr
cal point the size of the giant component scales as (^k&
21)M .

Based on the lattice gas analogy we expect that if^k&
,1, then for a suitable choice of the energy~one that re-
wards clustering! a similar dispersed-compact phase tran
tion occurs at a finite temperatureT(^k&). Such a transition
can be best monitored by the order parameterFs5smax/M
~the number of edges in the largest connected compo
smax divided by the total number of edges!, often used in
graph theory@29#.

The most obvious energy satisfying the above requ
ment is a monotonically decreasing functionE5 f (smax). In
this case the energy is independent of the distribution of
size of smaller clusters, or of the structural details of t
largest cluster: only the size of the largest cluster matt
The entropic part of the conditional free energy in this ca
can be estimated by counting the number of configuration
given smax. The number of different connected configur
tions of sizesmax can be estimated assmax

smax to leading order
@30# ~for an intuitive derivation see Appendix B!. This term
has to be multiplied by the number of possible selections
thesesmax vertices out ofN, which is simplyN over smax.
TheM2smax left-out edges can be placed anywhere betwe
theN2smax remaining vertices, with the restriction that the
cannot form clusters larger thansmax. Since we consider
smax5FsM to be an extensive quantity and the typical size
the largest component of these left-out edges scales slo
than M, this constraint can be neglected. Hence, the con
bution from the left-out edges can be well estimated by
(N2smax)

2/2 over (M2smax) factor. If we combine these
factors together, then in the thermodynamic limit~when
N,M→`, ^k&5const) we can write

Nclus'~FsM !FsMS N
FsM

D S ~N2FsM !2/2
M2FsM

D . ~9!

Since the energy of the system is a function of the or
parameterFs itself, the conditional free energyF(Fs ,T)
can be expressed as

e2F(Fs ,T)/T5Ncluse
2 f (Fs)/T5e2[ f (Fs)2T ln Nclus]/T. ~10!

By using Stirling’s formula@ l !'( l /e) lA2p l # to approxi-
mate the factorials and neglecting terms ofO(ln N), for
ln Nclus we get

ln Nclus'const1F11 ln
2M

N
2

2M

N GFsM

1F3M

2N
2

1

2
2

M2

N2 GFs
2M . ~11!

By replacing 2M /N with ^k& in the expression above, th
resulting conditional free energy can be expressed as
7-4
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F~Fs ,T!' f ~FsM !1MTH @^k&212 ln~^k&!#Fs

1@^k&223^k&12#
Fs

2

4 J . ~12!

The simplest choice for an energy function that depe
only on the size of the largest component is

f ~smax!52smax52FsM . ~13!

In this case it can be clearly seen from Eq.~12! that as long
as

T.Tc~^k&!5
1

^k&212 ln~^k&!
, ~14!

the free energy has a minimum atFs5Fs* (T)50, i.e., the
configuration is dispersed~see main panel of Fig. 2!. When
the temperature drops belowTc(^k&), the minimum moves
away fromFs50 and a giant component appears. Near
critical temperatureTc(^k&), the order parameter at the min
mum of the free energy can be estimated from Eq.~12! as

Fs* ~T!52
T212Tc

21~^k&!

^k&223^k&12
, ~15!

indicating that we are dealing with acontinuous topological
phase transition~see inset of Fig. 2!.

Topological phase transitions of first order are also
pected to occur for other forms of cluster energies. For
ample, whenf (smax) starts with a zero~or positive! slope. In
such a case, the behavior of the conditional free energ

FIG. 2. The phase diagram and the order parameter for thE
52smax energy. Main panel: The white and shaded areas co
spond to the ordered phase~containing a giant component! and the
disordered phase, respectively, as given by Eq.~14!. Inset: The
order parameterF5Fs5smax/M obtained from Monte Carlo simu
lations as a function of the inverse temperature for^k&50.1 ~tri-
angles! and ^k&50.5 ~circles!. Each data point is an ensemble a
erage of ten runs, time averaged betweent5100N and 500N Monte
Carlo steps. The open and closed symbols representN5500 and
1000 vertices, respectively. The critical exponent, in agreement
the analytical approximations~solid lines!,was found to be 1.
04611
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very high and very low temperatures is similar to the pre
ous case: whenT→`, the energy termf (smax) can be ne-
glected in Eq.~12!, and the entropic term has a minimum
Fs50, which is the dispersed state. In contrast, whenT
→0, only the energy term remains, resulting a minimum
F(Fs ,T) at Fs51, the compact state. However, there
also an intermediate temperature range, whereF(Fs ,T)
given by Eq.~12! starts as an increasing function atFs50
~since the linear term in the entropy dominates for sm
Fs), then reaches its maximum somewhere in the@0,1# in-
terval and continues as a decaying function from that po
on ~since the higher-order decaying terms in the energy ov
come the increasing terms at largerFs). As a consequence
the conditional free energy has two competing minima in
@0,1# interval, a metastable and a globally stable. The co
istence of stable and metastable minima at the transition
tween the phases is a characteristic of first-order phase
sitions. A simple function of this type isf (smax)52smax

2 . For
this choice of the energy, our numerical results are show
Fig. 3. The hysteresis appearing between cooling and hea
supports the theoretical considerations about the coexis
minima that indicate a first order phase transition, summ
rized in the inset of Fig. 3. The analytical conditional fre
energy gained by substitutingf (smax)52smax

2 into Eq. ~12!
has a single minimum, whenT,80 and whenT.430, in
former case at the dispersed state (Fs50), in latter case at
the connected state (Fs51). At intermediate temperature
these two minima coexist, predicting a first-order phase tr
sition somewhere in the middle part of this temperature

e-

th

FIG. 3. If the energy of the graph isE52smax
2 , then the order

parameter,Fs5M1 /M , shows a first-order transition. (M1 is the
number of edges in the largest component of the graph.! Each point
gives the value ofFs averaged betweent5490N and t5500N
Monte Carlo steps in a graph started att50 from an Erdo˝s-Rényi
random graph~o! or a star (3). The simulated graph hadN5500
vertices andM5125 edges. The inset shows the behavior of
analytical free energy obtained from Eq.~12! using the same pa
rameters. The temperature interval in which the two minima~at
Fs50, corresponding to the connected state and atFs51, corre-
sponding to the dispersed state! coexist is fully compatible with the
numerical findings for the transition regime.
7-5
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terval. The transition regime 170,T,270 observed in the
Monte Carlo~MC! simulation is compatible with the analyt
cal result, since one does not expect the simulation to re
the metastable state beside its dominant stable counterp
case of a very significant difference between the depth
the according minima in the free energy.

We have also investigated the case off (smax)
52smaxln(smax), both analytically and numerically. Simila
to the previous case, it can be shown that there is a temp
ture regime, where the conditional free energy as a func
of Fs has two competing minima, hence the transition is
first order.

Since the energyE5 f (smax) depends on a global quantit
~the size of the largest connected component! it might be also
reasonable to define the energy of the graph asE
5( j f (sj ), where the summation goes over each compon
andsj denotes the number of edges in thej th one. The total
number of edges,M5( j sj , is conserved by the dynamic
hencef (sj ) must decrease faster than linear to promote co
pactification. When a single giant component~containing the
majority of the edges! emerges, its energyf (smax) dominates
the energy of the entire graph, and, as a good approxima
the above analysis forE5 f (smax) can be repeated, leading t
first-order and continuous phase transitions. For the cas
E52( i 51

Nc si
2 , our numerical results are presented in Fig.

showing a first-order phase transition.
For theE52( i 51

Nc si ln(si) energy—similar to the case o
the E52smaxln(smax) energy—we found a first-order trans
tion between the ordered phase~present at low temperatures!
and the disordered phase~high temperatures!. Results are
shown in Fig. 5.

FIG. 4. The order parameter,Fs5M1 /M , for the E
52( i 51

Nc si
2 energy. (M1 is the number of edges in the largest com

ponent andNc is the number of components in a graph.! Each point
shows the value ofFs after t5200N Monte Carlo steps in a grap
started att50 from an Erdo˝s-Rényi random graph~o! or a star
(3). The simulated graph hadN5500 vertices andM5125 edges.
Observe that for intermediate temperatures there are two dis
groups of states with high stability~at Fs'0.620.9 andFs'0
20.15), andFs values in the region between these two rare
occur, i.e., a first-order transition was found.
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V. SINGLE-VERTEX ENERGY FUNCTIONS

Next we turn to another important class of the ener
functions, where the energies are assigned to the vert
rather than to the connected components of the graph:

E5(
i 51

N

f ~ki !, ~16!

whereki denotes the degree~number of neighbors! of vertex
i. This energy is consistent with a dynamics in which t
change of the degree of a vertex depends only on the st
ture of the graph in its vicinity. The fitness of an individu
vertex depends on its connectivity. The most suitable or
parameter for this class of graph energy isF5Fk
5kmax/M. Again, due to the conservation of the number
edges,M5( iki , the single-vertex energyf (ki) should de-
crease faster than2ki , if aggregation is to be favored.

We introduce an alternative form for single-vertex en
gies:

E5(
i 51

N

(
i 8

g~ki 8!, ~17!

wherei 8 runs over all vertices that are neighbors of vertexi.
In this interpretation, the fitness of an individual vertex d
pends on the connectivities of its neighbors and vertexi col-

nt

FIG. 5. Distribution of the size of the largest graph compone
smax, if the E52( i 51

Nc si ln(si) energy is used. Main panel. At low
temperatures the distribution of the largest component has
maximum at large values ofsmax, this is the ordered phase. At hig
temperatures, the largest component is small: the graph is d
dered. Inset: Using a higher resolution, one can observe that
transition from the low-temperature peak (T57) to the high-
temperature peak (T59) happens via a bimodal distribution (T
58, indicated by a solid line!. This indicates that the conditiona
free energy of the system has two competing minima at the in
mediate temperature, and the transition is of first order. The gra
used for the simulations hadN5500 vertices andM5125 edges.
Averages were taken for 10~main panel! or 200 ~inset! simulation
runs between simulation times oft5200N and t5400N Monte
Carlo steps using time steps oft5N.
7-6
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lects an energyg(ki 8) from each of its neighbors. Thes
neighbors in turn will all collectg(ki) from vertex i, there-
fore the total contribution to the energy from vertexi is
kig(ki). Thus, by using

f ~ki !5kig~ki !, ~18!

the two alternative forms of the single-vertex energy, E
~16! and ~17!, become equivalent.

A. The energyEÄÀ(ki
2 : Mapping to the Ising model

A natural choice for the energy of single-vertex type is t
following. Assign the negative energy2J to all pairs of
edges that share a common vertex at one end. The tota
ergy of a given configuration is then

E52
J

2 (
i 51

N

ki~ki21!52
J

2 (
i 51

N

ki
21

1

2
JM, ~19!

corresponding to f (ki)52(J/2)ki
2 @or equivalently, to

g(ki)52(J/2)ki ]. The constant term in Eq.~19! does not
play any role in the dynamics, hence it can be omitted. T
form of the energy is in full analogy with the usual definitio
of the energy

E52J (
^a,b&

nanb ~20!

of a lattice gas on the edge-dual graph of the fully connec
network with nearest-neighbor attraction. The summat
here runs over all adjacent pairs of lattice sites~correspond-
ing to possible edges between the vertices of the orig
graph! and na51 if site a is occupied and 0 otherwise
When this energy is applied to lattices, we recover the s
dard lattice gas model of nucleation of vapors. The nega
energy unit2J associated with a pair of edges sharing
vertex in the original graph is equivalent to the binding e
ergy between the corresponding occupied nearest-neig
sites on the edge-dual graph. By measuring the energies~and
temperature! in units of J we can setJ51, without losing
generality. Thus, from now onJ will be omitted.

The lattice gas representation can be further transform
to an Ising-model representation by introducing thesa
P@21,1# spinlike variables connected tona as na5(1
1sa)/2. The energy with the help of the spins is express
as

E52
1

4 (
^a,b&

sasb2
1

2 (
a51

N(N21)/2

sa2
1

8
N~N21!~N22!,

~21!

since the total number of lattice sites equalsN(N21)/2, and
the number of adjacent pairs of lattice sites isN(N21)(N
22)/2. This is similar to a ferromagnetic Ising model in a
external magnetic field. If the number of occupied sites in
lattice gas picture equals the number of unoccupied sites
contribution from the external magnetic field vanishes in
Ising-model picture. However, in the thermodynamic lim
where N→`,M→`,^k&52M /N5const, this condition
04611
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cannot be fulfilled, since the total number of sites scales
N2, whereas the number of particles scales asM with the
system size.

For the particular form off (ki) chosen, the topology with
the lowest overall energy is a ‘‘star’’~for simplicity, we con-
siderM,N), where all theM edges are connected to sing
node. The form of the conditional free energy in this case
be estimated as follows. In theFk.1/2 regime, where the
system contains a star of size larger thanM /2, the energy of
this star dominates the rest of the graph. Therefore, in
thermodynamic limit, we neglect this latter contribution
the total energy and approximate the energy of the graph
that of the largest star. Now we estimate the number of p
sible configurations for a given value ofFk . In case of a star
with K5FkM arms, the central vertex can be chosen fromN
different vertices. Once this is fixed,K edges have to be
distributed among theN21 possible links between the othe
vertices and the central one, yielding a factor ofN21 over
K. The rest of the edges that are not part of the star can
placed anywhere between theN21 ~noncentral! vertices,
contributing a factor of (N21)(N22)/2 over (M2K):

Nstar~K !'NS N21
K D S ~N21!~N22!/2

M2K D'NS N
K D S N2/2

M2K D .

~22!

Again, we use Stirling’s formula to approximate the facto
als, and neglect terms ofO(ln N) yielding

ln Nstar'M F N

M
ln

N

M
1

N2

2M
ln

N2

2M
2S N

M
2FkD lnS N

M
2FkD

2Fkln Fk2~12Fk!ln~12Fk!

2S N2

2M
211FkD lnS N2

2M
211FkD G . ~23!

In the thermodynamic limit, to leading order we receive

ln Nstar~x!'2FkM ln~N!, ~24!

where theFk independent terms were dropped. The result
conditional free energy is expressed as

F~Fk ,T!' f ~FkM !1FkMT ln~N!. ~25!

In the present case, with thef (ki)52ki
2 energy, Eq.~25! can

be written as

F~Fk ,T!'M @2Fk
2M1FkT ln~N!#. ~26!

Note that this approximation would be valid even forFk
,1/2, if the energy of the graph was simply defined asE
5 f (kmax).

The parabola given by Eq.~26! has a maximum atFk
5T/M ln(N). WhenT→0, this maximum also shifts toward
zero andF(Fk ,T) becomes a descending parabola on
@0,1# interval. This means that the minimum of the free e
ergy is atFk51, the star configuration. In contrast, when t
temperature goes above theT15M / ln(N) spinodal point
~thick solid line in Fig. 6!, the maximum moves out of the
7-7
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PALLA et al. PHYSICAL REVIEW E 69, 046117 ~2004!
@0,1# interval and the free energy becomes an ascending
rabola, resulting in a minimum at a low value ofFk ~corre-
sponding to an ER random graph!. However, this value can
not be deduced from Eq.~26!, because it is a valid
approximation only forFk.1/2. For intermediate tempera
tures the maximum of the parabola separates the two extr
topologies: the dispersed random graph and the star. On
these two extreme states is metastable and the other o
stable. Due to the limited validity of Eq.~26!, the stability of
these configurations can be studied only for temperatu
where the maximum of the parabola is well inside t
@1/2,1# interval.

The scenario of the transition from a dispersed state to
star configuration~see above! indicates that it is afirst-order
phase transition. This is well supported by the results of bo
the exact enumeration method and Monte Carlo simulatio
For small systems, the conditional free energy was evalu
via the exact enumeration method for various temperatu
and was found to be in qualitative agreement with the p
diction of the theoretical analysis, as demonstrated in Fig
The three different temperature regimes described in the
ceding paragraph can be recognized in the behavior of
exact F(Fk ,T) as well. Furthermore, in the intermedia
temperature regime, where the conditional free energy
two competing minima, the spinodal curve can also be c
structed as is shown in Fig. 8. For large enough systems
MC simulations a sudden change of the order parameter
tween zero and one can be observed as shown in Fig. 6.
hysteresis appearing between cooling and heating is co
tent with a first-order transition.

B. The energyEÄÀ(ki ln ki : Continuous phase transition

Another application-motivated choice for the singl
vertex energy isf (ki)52ki ln(ki), or equivalently, g(ki)
52 ln(ki), inspired, in part, by the logarithmic law of sens
tion. It is the logarithm of the degree of a vertex that

FIG. 6. The order parameterF5Fk5kmax/M as a function of
the temperature and the system size forE5( i2ki

2/2 and ^k&
50.5. The simulations were started either from a star~correspond-
ing to T50, solid line! or a classical random graph (T5`, dashed
line!. Each data point represents a single run, time averaged
tween t5100N and 200N Monte Carlo steps. The thick solid lin
shows the analytically calculated spinodalT15M / ln(N).
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neighbors can sense and benefit from. In this case the
figuration with the lowest energy is a fully connected su
graph@or almost fully connected ifM cannot be expressed a
n(n21)/2]. On the other hand, the star configuration is a
quite favorable, since the energy of both the maximal p
sible star and of the maximal possible fully connected s
graph scales as2M ln M to leading order. Amongst the sub
dominant terms in the energy, there is a difference in
order of AM lnAM between the two, in favor of the fully
connected subgraph. As before, we choose the order pa
eter to beF5Fk5kmax/M, since this can easily distinguis
between these two configurations:kmax'A2M for a fully
connected subgraph countingM edges, andkmax'M for a
star.

e-

FIG. 7. The picture of the conditional free energy at three d
ferent temperatures for thef (ki)52ki

2 energy, obtained from the
exact enumeration method plotted together with the prediction
our simple theoretical analysis forM512,N548. At low tempera-
turesF(Fk ,T) is a descending function on the@0,1# with a mini-
mum atFk51, the star configuration~top figure!, on the other hand
for high temperatures, it becomes ascending for most part, wi
minimum at lowFk , the dispersed states~bottom picture!. There is
an intermediate temperature regime in between, where the m
mum ofF(Fk ,T) separates two competing minima~middle figure!,
hence this phase transition is of first order.
7-8
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STATISTICAL MECHANICS OF TOPOLOGICAL PHASE . . . PHYSICAL REVIEW E 69, 046117 ~2004!
Our MC simulations demonstrate~Fig. 9! that as we cool
down the system, first the edges of the dispersed ran
graph assemble to form a configuration with a few large s
~sharing most of their neighbors!, and then at lower tempera
tures the graph is rearranged into an almost fully connec
subgraph. This is consistent with the fact that besides
slight energetical disadvantage, the star configuration is
tropically more favorable when compared to the fully co
nected subgraph; therefore the latter configuration can
over only at very low temperatures. The hysteresis near
few large star vs fully connected subgraph transition sugg
that it is a first-order phase transition. On the other hand,
transition between the dispersed state and the few large
is accompanied by a singularity in the heat capacity~also
seen with the exact enumeration method!, and no hysteresis
is observed, indicating that it is acontinuous phase transi
tion.

For Fk.1/2 Eq. ~25! can be used again as a good a
proximation for the free energy of the graph, since the co
pact cluster arising from the dispersed state is rather star
By plugging f (FkM )52(FkM )ln(FkM) into that expres-
sion, we get

F~Fk ,T!'M ~T21!ln~N!Fk ~27!

to leading order, which is linear inFk . In agreement with
our observations above, this formula predicts that forT,1
the star is a stable configuration (Fk51 is a minimum of the
free energy!, and forT.1 it becomes unstable. The trans
tion at T5Tc51 is thus steplike with no hysteresis, indica
ing a continuous phase transition with an infinitely lar
critical exponent. We assume that the observed deviatio
Tc from 1 in the MC simulations is a finite size effect.

C. Relation to growth with preferential attachment

A remarkable feature of the MC dynamics is that in ca
of the energyf (ki)52ki ln ki , by crossingTc from above, a

FIG. 8. The spinodal curve obtained from the exact enumera
method withE52( iki

2 , for M512,N548. At low and high tem-
peratures, the conditional free energyF(Fk ,T) has a single mini-
mum ~plotted with squares!. At intermediate temperatures~in be-
tween the two dotted lines! there are two competing minima. In thi
latter temperature regime, the spinodal curve is obtained by plot
the maximum ofF(Fk ,T) ~represented by stars!, besides the two
minima.
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scale-free graph~with a degree distribution;k2g with g.3!
appears at some point of the evolution of the graph from
random configuration towards the star. This supports the
tion that scale-free graphs are temporary~dynamical! con-
figurations, not typical in equilibrium distributions. The M
dynamics is governed by the change of the energy assoc
with the reallocation of an edge. Estimating the ene
change of a vertex by the derivative of the single-vertex
ergy f (ki)52ki ln(ki), we getDE512 ln(ki). Plugging this
into the Boltzmann factor, exp@2DE/T#, at T5Tc51 we get
a quantity proportional toki for the acceptation/rejection ra
tio of a randomly selected move. Since the preferential
tachment in the Baraba´si-Albert model@4# is proportional to
ki , it is natural that our dynamics also produces scale-fr
graphs.

Another interesting aspect of thef (ki)52ki ln ki energy
is that the configurations in the two compact phases resem
the two major graph topologies obtained in Ref.@18#, by
optimizing the network for local search with congestion. O
intermediate phase with a few large central hubs sha
neighbors is similar to the optimal topology for a small num
ber of parallel searches, whereas the low-temperature
figuration, the fully connected subgraph resembles the ho
geneous topology optimal for a large number of para

n

g

FIG. 9. Phases of the graph when the energy isE
52( iki ln(ki). ~a! The largest degreekmax for N510 224 vertices
and M52556 edges. Each data point represents a single run,
averaged betweent55000N and 20 000N MC steps. The data
points are connected to guide the eye. There is a sharp, contin
transition nearT50.85 and a first-order transition~with a hyster-
esis! aroundT50.520.6. ~b! The three different plateaus in~a!
correspond to distinct topological phases:kmax5O(1) to the classi-
cal random graph,kmax5O(M) to the star phase~a small number of
stars sharing most of their neighbors!, and kmax5O(AM ) to the
fully connected subgraph.~c! The ~cumulative! degree distribution
at T50.84 andt5600N follows a power law. This shows that th
degree distribution decays as a power law with the exponentg'3.
7-9
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PALLA et al. PHYSICAL REVIEW E 69, 046117 ~2004!
searches. However, an important difference between the
problems is that in our case a vertex is allowed to lose al
its connections under the restructuring process. The
‘‘similar-to-optimum’’ configurations appear as a natur
consequence of the underlying dynamics. This observa
suggests a potential application of the presented theory: t
ling problems related to graph topology optimization
simulated annealing techniques.

D. Topology-dependent nonextensiveness of the energy

Both types of the single-vertex energy functions discus
in the present section lead to compact configurations at
temperatures, for which the most highly connected verti
possess macroscopic numbers of edges. As a consequ
the energy of the system scales differently with system si
high and low temperatures, and diverges differently asN
→`. At high temperature, the system consists of many sm
unlinked clusters of about the same size, therefore a cha
in the total system size affects only the number of the cl
ters, and the energy scales asN. On the other hand, whe
f (ki)52ki ln(ki), at low temperatures the energy of the s
and the fully connected subgraph scales asN ln(N); in case
of f (ki)52ki

2 , the energy of the star scales asN2. Thus
~unlike, i.e., in the mean-field Ising model!, there isno way
to choose an appropriate coupling constant that could ren
the energy extensive in all topological states simultaneou.

Nevertheless, the dispersed state~having an extensive
graph energy! can equally be studied in the grand canoni
ensemble.

VI. THE GRAND CANONICAL ENSEMBLE

In the grand canonical ensemble, the degree distribu
can be expressed as@11#

Pk5C
e2b f (k)2mk

k!
, ~28!

whereC is a normalization factor and the chemical potent
m is adjusted to give the correct^k&. For f (k)52k ln(k),
using Stirling’s formula, the distribution takes the form

Pk5C
e2(m21)k

A2pk
k(1/T21)k. ~29!

WhenT.1, this has a tail, which decays faster than exp
nential, consequently, each vertex has a small degree.
T,1, on the other hand, the tail becomes divergent, sig
ing a phase transition atT5Tc51. Note however that in
the T,1 temperature range, due to the nonextensive con
bution of the diverging degrees, the ensembles are
equivalent, and the grand canonical description loses
validity.

At the critical temperature, the grand canonical desc
tion might still be valid. Choosing a more general sing
vertex energy,f (ki)52(ki2a)ln(ki), and settinĝ k& such
that m51, the degree distribution acquires a power law t
(Pk;k2(a11/2)) and the network becomes scale-free at t
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temperature. We have to stress though that the scale-free
work at Tc is not general: form.1 the tail decays exponen
tially and for m,1 the tail diverges.

VII. SUMMARY

We studied the restructuring in networks using a cano
cal ensemble, where temperature corresponds to the lev
noise in real systems and the energy associated with the
ferent configurations accounts for the advantage gained
lost during the rewiring of the edges. We found that for va
ous types of energies, first order and continuous phase t
sitions may appear when changing temperatures. In cas
the E52smax energy, if ^k&,1, a dispersed-loose phas
transition occurs at a finite temperature, equivalent to
percolation phase transition of classical random graphs w
^k& is varied around̂ k&51. We obtained a simple expres
sion for theTc(^k&) critical line separating the two phase
in the @^k&,T# plane from a theoretical analysis of the co
ditional free energy. For other forms of the energy dep
ding on the size of the largest cluster we found fir
order phase transitions. We also studied the effects of
ferent single-vertex energies, namely, theE52( iki

2 and E
52( iki ln(ki) cases. The network in the former case exhib
a first-order phase transition from a dispersed state to a
like state, where nearly all edges are linked to a single v
tex. With the2( iki ln(ki) energy, the dispersed state tran
forms into a compact one with a few large stars via
continuous phase transition. In the critical point, scale-f
networks can be recovered. At lower temperatures ano
transition occurs~this time of first order!, where the configu-
ration is turned into a fully connected subgraph.

Although in this paper we assumed that^k&<1, this is not
a necessary requirement, when the energy is assigned t
dividual vertices. For large average degree (^k&.2) the only
difference is that one vertex cannot collect all the edges,
thus, several stars appear in the star configuration. Fur
interesting directions in the context of the above study
clude the investigation of additional relevant forms for t
energy@e.g.,E5(k2n)2 with n.1.5] and the joint effects
of restructuring and growth.
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APPENDIX A

In the exact enumeration method, as mentioned in S
III A, the first step is to generate all connected graphs w
m11 edges from the connected graphs withm edges, either
by connecting a new vertex to the core or by introducing
new link. In order to avoid double counting, every new gra
obtained this way is compared one by one to all alrea
revealed topologies using the following algorithm. Tw
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STATISTICAL MECHANICS OF TOPOLOGICAL PHASE . . . PHYSICAL REVIEW E 69, 046117 ~2004!
graphs of identical topology have identical degree distri
tion also, therefore this property is checked first. In case
perfect match, the vertices in both graphs are labeled in s
a way that a given index belongs to vertices with eq
number of links in the two graphs. Next, for each ind
in one graph, the set of the neighbor indices is compa
to its equivalent index set in the other graph. If not all s
are identical, then the labels in one of the graphs have
be permuted until perfect match between the neighbo
relations is reached.~Obviously, labels are interchange
between vertices of same degree only.! If the perfect match
in the neighboring relations cannot be achieved for any p
mutation of the indices, the two graphs are of different
pology.

When a new topology is obtained, the correspond
combinatorial factors can be generated in a similar man
by counting the number of permutations of the indices in
graph that lead to the same neighboring relations~same
neighboring index sets! as the original indexing.

As a simple example, we demonstrate the evaluation
Na for all states in case ofM53,N>6. The construction of
the connected graphs and the possible topologies are sh
below:

In case of a topology that does not possess any sym
tries,N is simply N!/(N2Nt)!, whereNt is the number of
vertices included in the topology. In general this initialN has
to be further divided by the number of those permutations
the indices of the vertices that leave the topology unchang
Therefore, if the topology containsn identical subgraphs
~such as in case of statea51 above, where the topology i
built up from three identical subgraphs! the initial value ofN
has to be divided byn!. Furthermore, if any subgraph in th
topology remains unchanged forl permutations of the indi-
ces within itself,N has to be divided byl. In the example
above, for the statesa51 and a52, for all subgraphs,l
52, in case of the statesa53 anda55, l 53!, and for the
statea54, l 52.

Altogether, in the chosen case,N of the five possible
states can be expressed as

N15
N!

~N26!!233!
, N25

N!

~N25!!22
,

N35
N!

~N24!!3!
, N45

N!

~N24!!2
, N55

N!

~N23!!3!
.
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To provide a simple example of an application, we sh
the first few most probable states in case ofE52(ki ln ki at
T50.65:

When the temperature is lowered toT50.3, these are
replaced by the following graphs:

APPENDIX B

For simplicity, we shall consider treelike clusters only a
neglect the clusters with loops. Since the chances of a c
ponent containing a closed loop of edges goes asN21 when
^k&,1 and no giant connected component can be found
the system, this is a valid approximation in the thermod
namic limit @31#. The number of possible trees of sizes in an
undirected network can be estimated as follows. We pic
random realization of a tree sizeds ~meanings edges ands
11 vertices!, and we choose a vertex in it to be the ‘‘root’’ o
the tree. Starting from this root, we descend through all p
sible paths until we reach all the branches, and on the w
we replace the undirected edges with directed ones poin
from the vertex closer to the root towards the vertex fart
away from the root. This procedure results in a direc
tree, where each vertex~except the root! has one and only
one incoming edge andn>0 outgoing edges. Then, anoth
realization of a tree can be obtained from the present
by choosing a vertex, and moving the other end of the
coming edge from its original place to a new vertex.
course, this new vertex cannot be one of the ‘‘descenda
of the selected vertex, since that way we would create a l
and split the tree into two unconnected parts. Neverthel
if s is large enough, for the majority of the vertices th
restriction eliminates only a negligible part of the possib
rewirings. Therefore we may estimate the number of poss
new trees obtained from the rewiring of the incoming ed
of a single vertex bys, and the total number of trees of siz
s by ss.
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