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Intrawell Relaxation Time: The Limit of the Adiabatic Approximation
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We consider the overdamped motion of a Brownian particle in a potential well and examine the
relaxation of its probability distribution. We give a new definition, based on the mean first passage
time, for theintrawell relaxation timewhich characterizes the relaxation process in the entire well and
can be expressed analytically for an arbitrary potential. Further, we show how it can be approximated
by other simple quantities in most cases. If the characteristic time scale of some modulation of the
potential is much longer than this intrawell relaxation time, the particle’s probability distribution can be
considered to badiabatically adjustedo the potential at every instant. [S0031-9007(99)08815-8]

PACS numbers: 05.40.—-a, 02.50.Ey, 05.60.Cd, 82.20.—w

The relaxation of (the probability distribution of) an  The shortcoming of the above two choices is that in
overdamped Brownian particle in a potential well is cru-most cases these quantities characterize the relaxation
cial in many physical, chemical, and biological systemsonly near the bottom of the well, where the majority of
where the potential of the particle is subject to change (e.gthe probability can be found. However, there are very
due to some chemical transition, external fluctuation, oimportant situations (such as escape over a barrier or
oscillation). When the particle is placed into a new po-chemical transition which is allowed only near the top of
tential well, or its potential well suddenly changes, it takesa barrier) when the relaxation of the probability density in
some time for the particle’s probability distribution to ad- the entire wellis crucial.
just to the new circumstances. Thigrawell relaxation In this paper we give a new definition for the IRT that
time (IRT) is of great importance because it separates twovercomes these shortcomings, can be expressed analyti-
different regimes of the system’s behavior. If the charac<cally for an arbitrary potential, and can be well approxi-
teristic time scale of the change of the potential is muctmated by other simple quantities in the most relevant cases.
longer than the IRT, the particle’s probability distribution We also elaborate on the difference between the IRT for
can be considered to be adjusted to the potential at any imeflecting and absorbing boundaries, and give some ex-
stant, otherwise the adiabatic approximation may fail and amples when the IRT plays an important role.
more detailed analysis of the Brownian motion is required. The time evolution of the probability densiB(x, r) of

There is no obvious quantitative definition for the IRT. an overdamped Brownian particle in a potentialx) is
The relaxation is not exponential and proceeds differentlydescribed by the Fokker-Planck equation (FPE)
at different points of the well. One natural choice for the P(x,t) = —J'(x,1), 1)

IRT is the inverse of the smallest nonvanishing elgenvalue
of the corresponding Fokker-Planck equatian,'. An-
other possibility is the correlation timer4,.) defined as J(x,1) = =U'(x)P(x,1)/y — DP'(x,1) )
the areaf,, C(r)/C(0) dt under the curve of the normal- is the particle’s probability current. The diffusion coef-
ized autocorrelation function of the particle’s positicin),  ficient D and viscous drag coefficient are connected
where C(¢) = (x(0)x(¢)) — (x(0))? is the autocorrelation by the Einstein relatiorD = kgT/y, whereky denotes
function and the symbaf---) designates the equilibrium the Boltzmann constant anfl is the absolute tempera-
ensemble average [1]. ture. In the following we denote the expectation value

where
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[ f(x)P(x) dx of an arbitrary functiory (x) averaged over If the starting position is at the bottom of the potential
the particle’s probability densit®(x) by f[P(x)]. well, the MFPT to a position increases exponentially with

A central quantity of our paper is the mean first passag¢he potential energy at, but the Boltzmann factoB(x)
time (MFPT), defined as the average time needed for decreases exponentially. Thus, each point of the well has
particle moving in the intervdl4, C] to reach the position a similar contribution tor,, and not only the points near
x (A = x = C) from the initial positionyg (A = xo = C),  the bottom.
given that there is a reflecting boundary at the opposite end Another argument for our definition is as follows [4].
point (A if xp < x andC if x < xy) of the interval. A Consider the MFPT from to C. SinceC is the farthest
general formula for the MFPT is given in Ref. [2] and in point from A, the probability density (starting from a delta

Sec. 5.2.7 of Ref. [3], function atA) relaxes atC last. Therefore, the MFPT
1 X,y from A to C can be divided into two parts corresponding
Falxo — x] = — ] / V=V QVKT g7 gy, to two hardly overlapping processes: the relaxation in the
D Jx Ja well and the passage from the equilibrium distribution to
if xo <x, (3) C. Thus, the IRT can be given as the difference between
the MFPT fromA to C (Fa[A — C]) and the MFPT from
Folro — x] = 1 /X" ]Ce[U(y)—U(z)]/kBTd p a Boltzmann distributed positianto C (F4[B(x) — CJ).
clro D). J, L4y Using the additivity of the MFPT, this can be written as
if x = xo 4) Fu[A — B(x)], which coincides withr,..

The above argument indicates thatcharacterizes the

The subscript of the MFPT always indicates the positionsjowest possible relaxation process in a closed interval,
of the relevant reflecting boundary. Note that the MFPT ishamely, the relaxation of the probability density at one
additive in the following sensefu[xo — x1] + Falx1 =  end point of the interval starting from a delta function
0] = Falxo = x]if A=xg=x1 =x,=C. at the other end point. Therefore, in many casgds

First consider an arbitrary potential segment on the insigniﬁcanﬂy larger than eithe.ﬁf‘ Of Teorr. The reason
terval[A, C] with reflecting boundaries at both end points. for this is that if the eigenvalues of the FPE are close to
The equilibrium distribution of the particle’s position in gne another, the linear combination of the corresponding
this interval is the Boltzmann distributioB(x) with the  exponential functions (at positions far from the bottom of

normalization facto, the well) can result in a function characterized by a time
Lyt C UG)keT much larger than the inverse of the smallest eigenvalue.
B(x) = — ¢ R zZ= fA e "I dx . Consider a particle on a linear potential (for which the

FPE can be solved analytically) with slogg reflecting
® h = ~° . -
) ) ) ) oundaries att = 0 and x = L, and starting position
By some algebraic manipulation of the integrals, remark-t xo = 0. Then, if FL > kgT, our definition for the
ably one can shpyv that the average MFPT from a pos?tioqRT gives 7, ~ yL/F (in perfect agreement with the
xo to a final positionx averaged over the Boltzmann dis- anaytical result for the relaxation timeat= L). In stark
tribgt.ion Faclxo — Bx)] =7 is independenbf initial  contradiction, A7 = 7o ~ 2yksT/F? is independent
positionx and can be written as of L and proportional td, indicating thatA; ' and 7.
1 C rC rC describe the relaxation only at the diffusion dominated
T, = — f f f VWU =VDVKT g7 gy gx . bottom region.
DZ Ja Jx Jy 6 Now, let us consider a potential well with reflecting
6) boundaries at = 0 andx = L (as illustrated in Fig. 1a),
Note that in Fy.c[xo — B(x)] the order ofx, and x is
not defined ifA < xy < C; therefore both reflecting end
points of interval must be indicated in the subscript. (a) (b)

The timer, can be interpreted as the average time that v Uy
is necessary for the required amount of probability [which
is proportional to theB(x)] to get to every positionr from
positionx, to reach equilibrium. Since, is independent
of xg, any deviation from the equilibrium distribution
vanishes during this time. Thus, truly is the IRT in 101
an interval with reflecting boundaries.

Let us further investigate the physical meaningrof % - ol—i i
Since it is independent of the starting positien,is also 0 L = 0 02 05 08 1 X
equivalent tofA’C[B(xO), — B(x)] Wh'f:h can be inter- 5 1 (a) Schematic picture of a potential well with reflect-
preted as the average time of the redistribution of the pafing poundaries at = 0 and x = L, and (b) a four-segment
ticle’s equilibrium distribution. piecewise linear potential for the illustration of our results.
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and see how the IRT can be approximated by other simple 1000

gquantities in most cases. If the potential well is deep ‘\\
enough (compared thg7T) and it has a sufficiently steep 100 L ‘\‘
slope all the way fromx = 0 to L, the IRT (which \
can be written asf;[L — B(x)]) can be approximated \!
by F.[L — 0], which can be further estimated by the o 10 f ‘
deterministic sliding down timfgom the top of the barrier =
to the bottom of the well [4,5]. If the potential well is deep 1E .
. . . eq. time at the top
enough and contains an additional deep local minimum, —_
the IRT can be approximated by theguilibration time o1k 'ﬂ[lj_'og)e 2 wells Bk
between the two subwellse., by the inverse of the sum T g dowmtime
of the rate constants between the two subwells. —— eq. time between 2 wells
To illustrate our definition we solved the FPE numeri- OO e 0 s 0 s 10 15 20 25 30
cally for the potential well depicted in Fig. 1b for differ- E

ent values of the parametgrthat allowed us to explore a _ o
number of qualitatively different important situations over 7'G: 2. The numerical results for the relaxation time of the
. . o - robability density at the top of the potential of Fig. 1(b)

a wide range of time scales. The probability density Wa%cwcles) agree perfectly with our definition for the IRT (solid
initially set to a delta function at = 0, and the units were |ine) for any value of the parametdf. The other lines are
chosen such that = y = kgT = 1. We measured the approximations for the IRT (see the text for details).
relaxation time of the probability density &t= 1 (esti-
mated as the time that is needed to reach Ithe ¢! )
portion of the equilibrium value). Since the probability the “relaxation” can be neglected, and the IRT can be
density equilibrates at positiah = 1 last, the relaxation apPproximated by that for reflecting barriers. o
time there properly describes the relaxation in the entire FOr a detailed analysis let us consider the relaxation in a
well. The results of the numerical evaluation (indicatedSufficiently deep well (as shown in Fig. 1a) with absorbing
by circles in Fig. 2) agree with our definition for the IRT boundary atx = L (and reflecting one at = 0). Since
(solid line) extremely well. The IRT can be approximatedthe outflow atL is very slow, one can make the system
by F.[L — 0] (dashed line) wheiE > 3, i.e., when the closed by putting the probe}blllty that_ would floyv out of
Boltzmann distribution is dominated@t ForE < 10and  the system back to the positian= 0, without altering the
E > 18 there is an additional local minimum, and the IRT “quasistationary” probability distribution too much. For
can be well approximated by the relaxation time betweerhiS system the stationary distributidiix) can easily be
the two subwells (dotted line and dashed line with longderived from the FPEs (1) and (2),
dashes) when the local minimum is deep enough<( 7 1
or E > 21). For12 < E < 16 the slope of the well is Sk =+ ] el VHUDVT gy, | (7
steep enough and the IRT can be approximated by the de- !
terministic sliding down time (dash-dotted line). Where

The situation with absorbing boundaries is problematic. Yy — fL [L JURTUG /T gy, g
The system is open, the probability is continuously flowing o Ju Y
out at the absorbing boundaries, and there is no stationary o o ) ) )
probability distribution to which the particle’s distribution ' the normalization factor. Similar to the situation with
would converge. 7., cannot be defined either, and the reflecting boundaries, we can define the IRT$0 —
smallest eigenvalug, of the FPE (which is zero for closed S ()], i-e., the difference between the MFPT frdo L
systems) becomes nonzero. However, if the barriers nd the MFPT from a stationary distributed positiotto

a potential well are sufficiently high, the outflow durinP L. B}{/_tsome %Igebr_?tic manipulation one can show that this
quantity can be written as

1 L ;L (L (L
Tg = —— / f / f TV —VQTU@AT oy g7 dy dix 9)
DY 0 X y z

which is identical with J[L < S(x)], the mean instan- x to L) after the particle has touched its initial position
ton time (MIT) betweenL and a stationary distributed L (or x) for the last time. Amazingly, the MIT is
position.x. independent of the direction of the travel. From Sec. 9.1.5

The MIT betweenL and x is defined as the average of Ref. [3] one can express the MIT betwedn and
duration of the travel (instanton) from to x (or from | xas

(8)

1 L L L ‘
I[L & x]= —— f f f VOV TU@NIT gy, gz dy = Fi[L — x] — Wi[L], (10)
DZj 11 )x Jy J:
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where

1 L L Z N B v " «
o [ [ [ s ey - Fga—0
X, J

WiL] =

is the mean wiggling time (MWT) at the end poihtof | the exact solution at around = 10~!, which coincides
the interval[x,L]. The relation F;[L — x] = I[L —  with the inverse of the IRT (left vertical bar), confirming
x] + W,[L] reflects that the mean first passage frim our expectation that the adiabatic approximation is valid
to x (with reflecting boundary al) can be viewed as only when the modulation of the potential is much slower
a wiggling process aL, during which the particle hits than the inverse of the IRT. Since our potential well
the boundaryL (infinitely) many times, followed by a contains an additional local minimum, we can make a
travel from L to x after the particle has touched for  further check. Let us consider the two subwells separately
the last time. The superscripton any quantity indicates and apply the rate theory for a system with two states. Now
that the inverted potentiak-U(x), should be considered, the result (dashed line) starts to deviate from the exact
and the subscridtx, L] indicates that both the Boltzmann solution at a much larger flipping rate (around= 10?)
distribution BE},L](y) = exp{U(y)/(kBT)}/Zf‘x,L] and its  that corresponds to the maximum of the IRTs in the two
normalization facto®Z[, ;; = [ explU(y)/(ksT)}dy are ~ Subwells (right vertical bar). . .
defined on the intervdk, L]. We have presented a consistent picture of the intrawell
Since the potentiaj well has been chosen to be Sufﬁ[elaxation based on the MFPT. Our new definition for the

ciently deep, the distribution(x) andS(x) are very simi-  IRT represents the slowest relaxation within an interval
lar to each other and both are dominated at the bottorRe€cause it incorporates passage from the end points of
of the well. Therefore, based on the relation between théhe interval through the intervening terrain. Thus, this
MFPT and the MIT,r, = I[L < S(x)] can be well ap- quantity is appropriate for describing the equilibration of
proximated by F;[L — B(x)] — Wy[L], leading to the the probability distribution in the entire potential; i.e.,
approximate relation that the IRT for the absorbing bar-2fter this time the probability distribution can safely be

rier is shorter than that for the reflecting barrier by aboutconsidered to be equilibrated at every position irrespective
the MWT at the top, of the initial condition. As a consequence, our definition

for IRT gives the correct criterion for the applicability of
7 = 7, = WL]. (12) Kramers' rate theory. Other quantities such)gs and
This relationship has a nice physical interpretatian.is  7cor Provide better estimates of the relaxation of faster
not only the IRT of the probability density for the absorb- processes, such as equilibration near the bottom of the
ing barrier, but also the relaxation time of the probability potential, but may severely underestimate the relaxation
current leading to the top of the barrier. Thus, for thetime at the rarely visited places.
reflecting barrier a probability current leading to the top
also relaxes during the time,, but due to the reflecting

boundary condition the probability that has reached the 757
top is not absorbed, but spends about the MWT at the top — exact
before flowing back to the bottom. Therefore, to build up 7.56 -==- rate theory for 2 wells

------- rate theory for 1 well

the equilibrium distribution at the top takes about the sum

of 7, and Wy[L]. In most casesW,[L] is much smaller =77

thanr,, in agreement with our expectations that the IRT ‘T’ 754 }

for the absorbing barrier can usually be well approximated &

by the IRT for the reflecting barrier. i:,o 7.53 |
Finally, let us consider an example when the IRT clearly =2

separates the adiabatic and nonadiabatic regimes. The 752

subject of our examination is the MFPT over a fluctuating 751}
barrier [4,6,7]. Let us use again the potential well depicted
in Fig. 1b, for a fixed parameteE = 1, and apply a 7.50 e
-12 -10 8 6 -4 -2 0 2 4 6

dichotomously fluctuating force betweerF and—F with
amplitudeF = 0.5 and flipping ratev. The MFPT from
the bottom to the top can be calculated analytically (forFIG. 3. Log-log plot of the MFPT from the bottom to the
any dichotomously fluctuating piecewise linear potentiaftop of the potential of Fig. 1(b) (forz = 1) as a function
[6]) and is plotted in Fig. 3 (solid line) as a function of of the flipping rater of an applied dichotomously fluctuating

he flipping rate. The MFPT in the adiabatic limit can force betweent F and —F with amplitude £/ =0.5. The

the Tlipping : , adiabatic approximations (dashed and dotted lines) start to
also be calculated from Kramers’ rate theory. The resulfieviate from the exact solution (solid line) at the inverse of
for our potential well (dotted line) starts to deviate from the corresponding IRTs (vertical bars).

log(v)
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