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We consider the overdamped motion of a Brownian particle in a potential well and examine
relaxation of its probability distribution. We give a new definition, based on the mean first pass
time, for theintrawell relaxation time,which characterizes the relaxation process in the entire well an
can be expressed analytically for an arbitrary potential. Further, we show how it can be approxim
by other simple quantities in most cases. If the characteristic time scale of some modulation of
potential is much longer than this intrawell relaxation time, the particle’s probability distribution can
considered to beadiabatically adjustedto the potential at every instant. [S0031-9007(99)08815-8]
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The relaxation of (the probability distribution of) an
overdamped Brownian particle in a potential well is cru
cial in many physical, chemical, and biological system
where the potential of the particle is subject to change (e.
due to some chemical transition, external fluctuation,
oscillation). When the particle is placed into a new po
tential well, or its potential well suddenly changes, it take
some time for the particle’s probability distribution to ad
just to the new circumstances. Thisintrawell relaxation
time (IRT) is of great importance because it separates tw
different regimes of the system’s behavior. If the chara
teristic time scale of the change of the potential is muc
longer than the IRT, the particle’s probability distribution
can be considered to be adjusted to the potential at any
stant, otherwise the adiabatic approximation may fail and
more detailed analysis of the Brownian motion is require

There is no obvious quantitative definition for the IRT
The relaxation is not exponential and proceeds different
at different points of the well. One natural choice for th
IRT is the inverse of the smallest nonvanishing eigenvalu
of the corresponding Fokker-Planck equation,l

21
1 . An-

other possibility is the correlation time (tcorr) defined as
the area

R`

0 CstdyCs0d dt under the curve of the normal-
ized autocorrelation function of the particle’s positionxstd,
whereCstd ­ kxs0dxstdl 2 kxs0dl2 is the autocorrelation
function and the symbolk· · ·l designates the equilibrium
ensemble average [1].
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The shortcoming of the above two choices is that
most cases these quantities characterize the relaxa
only near the bottom of the well, where the majority o
the probability can be found. However, there are ve
important situations (such as escape over a barrier
chemical transition which is allowed only near the top o
a barrier) when the relaxation of the probability density
theentire wellis crucial.

In this paper we give a new definition for the IRT tha
overcomes these shortcomings, can be expressed ana
cally for an arbitrary potential, and can be well approx
mated by other simple quantities in the most relevant cas
We also elaborate on the difference between the IRT
reflecting and absorbing boundaries, and give some
amples when the IRT plays an important role.

The time evolution of the probability densityPsx, td of
an overdamped Brownian particle in a potentialUsxd is
described by the Fokker-Planck equation (FPE)

ÙPsx, td ­ 2J 0sx, td , (1)

where

Jsx, td ­ 2U 0sxdPsx, tdyg 2 DP0sx, td (2)

is the particle’s probability current. The diffusion coef
ficient D and viscous drag coefficientg are connected
by the Einstein relationD ­ kBTyg, wherekB denotes
the Boltzmann constant andT is the absolute tempera-
ture. In the following we denote the expectation valu
© 1999 The American Physical Society 2623
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fsxdPsxd dx of an arbitrary functionfsxd averaged over

the particle’s probability densityPsxd by ffPsxdg.
A central quantity of our paper is the mean first passa

time (MFPT), defined as the average time needed fo
particle moving in the intervalfA, Cg to reach the position
x (A # x # C) from the initial positionx0 (A # x0 # C),
given that there is a reflecting boundary at the opposite e
point (A if x0 , x and C if x , x0) of the interval. A
general formula for the MFPT is given in Ref. [2] and in
Sec. 5.2.7 of Ref. [3],

FAfx0 ! xg ­
1
D

Z x

x0

Z y

A
efUs yd2UszdgykBT dz dy

if x0 # x , (3)

FCfx0 ! xg ­
1
D

Z x0

x

Z C

y
efUs yd2UszdgykBT dz dy

if x # x0 . (4)

The subscript of the MFPT always indicates the positio
of the relevant reflecting boundary. Note that the MFPT
additive in the following sense:FAfx0 ! x1g 1 FAfx1 !
x2g ­ FAfx0 ! x2g if A # x0 # x1 # x2 # C.

First consider an arbitrary potential segment on the i
tervalfA, Cg with reflecting boundaries at both end points
The equilibrium distribution of the particle’s position in
this interval is the Boltzmann distributionBsxd with the
normalization factorZ,

Bsxd ­
1
Z

e2UsxdykBT , Z ­
Z C

A
e2UsxdykBT dx .

(5)

By some algebraic manipulation of the integrals, remar
ably one can show that the average MFPT from a positi
x0 to a final positionx averaged over the Boltzmann dis
tribution FA,Cfx0 ! Bsxdg ; tr is independentof initial
positionx0 and can be written as

tr ­
1

DZ

Z C

A

Z C

x

Z C

y
ef2Usxd1Us yd2UszdgykBT dz dy dx .

(6)

Note that inFA,Cfx0 ! Bsxdg the order ofx0 and x is
not defined ifA , x0 , C; therefore both reflecting end
points of interval must be indicated in the subscript.

The timetr can be interpreted as the average time th
is necessary for the required amount of probability [whic
is proportional to theBsxd] to get to every positionx from
positionx0 to reach equilibrium. Sincetr is independent
of x0, any deviation from the equilibrium distribution
vanishes during this time. Thus,tr truly is the IRT in
an interval with reflecting boundaries.

Let us further investigate the physical meaning oftr .
Since it is independent of the starting position,tr is also
equivalent toFA,CfBsx0d ! Bsxdg which can be inter-
preted as the average time of the redistribution of the p
ticle’s equilibrium distribution.
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If the starting position is at the bottom of the potentia
well, the MFPT to a positionx increases exponentially with
the potential energy atx, but the Boltzmann factorBsxd
decreases exponentially. Thus, each point of the well h
a similar contribution totr , and not only the points near
the bottom.

Another argument for our definition is as follows [4].
Consider the MFPT fromA to C. SinceC is the farthest
point fromA, the probability density (starting from a delta
function at A) relaxes atC last. Therefore, the MFPT
from A to C can be divided into two parts corresponding
to two hardly overlapping processes: the relaxation in th
well and the passage from the equilibrium distribution t
C. Thus, the IRT can be given as the difference betwee
the MFPT fromA to C (FAfA ! Cg) and the MFPT from
a Boltzmann distributed positionx to C (FAfBsxd ! Cg).
Using the additivity of the MFPT, this can be written as
FAfA ! Bsxdg, which coincides withtr .

The above argument indicates thattr characterizes the
slowest possible relaxation process in a closed interva
namely, the relaxation of the probability density at on
end point of the interval starting from a delta function
at the other end point. Therefore, in many casestr is
significantly larger than eitherl21

1 or tcorr . The reason
for this is that if the eigenvalues of the FPE are close t
one another, the linear combination of the correspondin
exponential functions (at positions far from the bottom o
the well) can result in a function characterized by a tim
much larger than the inverse of the smallest eigenvalu
Consider a particle on a linear potential (for which the
FPE can be solved analytically) with slopeF, reflecting
boundaries atx ­ 0 and x ­ L, and starting position
at x0 ­ 0. Then, if FL ¿ kBT , our definition for the
IRT gives tr ø gLyF (in perfect agreement with the
analytical result for the relaxation time atx ­ L). In stark
contradiction,l21

1 ø tcorr ø 2gkBTyF2 is independent
of L and proportional toT , indicating thatl21

1 andtcorr
describe the relaxation only at the diffusion dominate
bottom region.

Now, let us consider a potential well with reflecting
boundaries atx ­ 0 andx ­ L (as illustrated in Fig. 1a),

FIG. 1. (a) Schematic picture of a potential well with reflect
ing boundaries atx ­ 0 and x ­ L, and (b) a four-segment
piecewise linear potential for the illustration of our results.
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and see how the IRT can be approximated by other sim
quantities in most cases. If the potential well is dee
enough (compared tokBT ) and it has a sufficiently steep
slope all the way fromx ­ 0 to L, the IRT (which
can be written asFLfL ! Bsxdg) can be approximated
by FLfL ! 0g, which can be further estimated by th
deterministic sliding down timefrom the top of the barrier
to the bottom of the well [4,5]. If the potential well is deep
enough and contains an additional deep local minimu
the IRT can be approximated by theequilibration time
between the two subwells,i.e., by the inverse of the sum
of the rate constants between the two subwells.

To illustrate our definition we solved the FPE numer
cally for the potential well depicted in Fig. 1b for differ-
ent values of the parameterE that allowed us to explore a
number of qualitatively different important situations ove
a wide range of time scales. The probability density w
initially set to a delta function atx ­ 0, and the units were
chosen such thatL ­ g ­ kBT ­ 1. We measured the
relaxation time of the probability density atL ­ 1 (esti-
mated as the time that is needed to reach the1 2 e21

portion of the equilibrium value). Since the probabilit
density equilibrates at positionL ­ 1 last, the relaxation
time there properly describes the relaxation in the ent
well. The results of the numerical evaluation (indicate
by circles in Fig. 2) agree with our definition for the IRT
(solid line) extremely well. The IRT can be approximate
by FLfL ! 0g (dashed line) whenE . 3, i.e., when the
Boltzmann distribution is dominated at0. ForE , 10 and
E . 18 there is an additional local minimum, and the IRT
can be well approximated by the relaxation time betwe
the two subwells (dotted line and dashed line with lon
dashes) when the local minimum is deep enough (E , 7
or E . 21). For 12 , E , 16 the slope of the well is
steep enough and the IRT can be approximated by the
terministic sliding down time (dash-dotted line).

The situation with absorbing boundaries is problemat
The system is open, the probability is continuously flowin
out at the absorbing boundaries, and there is no station
probability distribution to which the particle’s distribution
would converge. tcorr cannot be defined either, and th
smallest eigenvaluel0 of the FPE (which is zero for closed
systems) becomes nonzero. However, if the barriers
a potential well are sufficiently high, the outflow during
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FIG. 2. The numerical results for the relaxation time of th
probability density at the top of the potential of Fig. 1(b
(circles) agree perfectly with our definition for the IRT (solid
line) for any value of the parameterE. The other lines are
approximations for the IRT (see the text for details).

the “relaxation” can be neglected, and the IRT can
approximated by that for reflecting barriers.

For a detailed analysis let us consider the relaxation i
sufficiently deep well (as shown in Fig. 1a) with absorbin
boundary atx ­ L (and reflecting one atx ­ 0). Since
the outflow atL is very slow, one can make the system
closed by putting the probability that would flow out o
the system back to the positionx ­ 0, without altering the
“quasistationary” probability distribution too much. Fo
this system the stationary distributionSsxd can easily be
derived from the FPEs (1) and (2),

Ssxd ­
1
Y

Z L

x
ef2Usxd1Us ydgykBT dy , (7)

where

Y ­
Z L

0

Z L

x
ef2Usxd1Us ydgykBT dy dx (8)

is the normalization factor. Similar to the situation wit
reflecting boundaries, we can define the IRT asF0f0 !
Ssxdg, i.e., the difference between the MFPT from0 to L
and the MFPT from a stationary distributed positionx to
L. By some algebraic manipulation one can show that t
quantity can be written as
ta ­
1

DY

Z L

0

Z L

x

Z L

y

Z L

z
ef2Usxd1Us yd2Uszd1UsydgykBT dy dz dy dx , (9)
n

1.5
which is identical withI fL $ Ssxdg, the mean instan-
ton time (MIT) betweenL and a stationary distributed
positionx.

The MIT betweenL and x is defined as the average
duration of the travel (instanton) fromL to x (or from
x to L) after the particle has touched its initial positio
L (or x) for the last time. Amazingly, the MIT is
independent of the direction of the travel. From Sec. 9.
of Ref. [3] one can express the MIT betweenL and
x as
I fL $ xg ­
1

DZp
fx,Lg

Z L

x

Z L

y

Z L

z
efUs yd2Uszd1UsydgykBT dy dz dy ­ FLfL ! xg 2 WxfLg , (10)
2625
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where

WxfLg ­
1

DZp
fx,Lg

Z L

x

Z L

y

Z z

x
efUs yd2Uszd1UsydgykBT dy dz dy ­ F p

x fBp
fx,Lgs yd ! Lg (11)
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is the mean wiggling time (MWT) at the end pointL of
the interval fx, Lg. The relationFLfL ! xg ­ I fL $
xg 1 WxfLg reflects that the mean first passage fromL
to x (with reflecting boundary atL) can be viewed as
a wiggling process atL, during which the particle hits
the boundaryL (infinitely) many times, followed by a
travel from L to x after the particle has touchedL for
the last time. The superscriptp on any quantity indicates
that the inverted potential,2Usxd, should be considered,
and the subscriptfx, Lg indicates that both the Boltzmann
distribution Bp

fx,Lgs yd ­ exphUs ydyskBT djyZp
fx,Lg and its

normalization factorZp
fx,Lg ­

RL
x exphUs ydyskBT dj dy are

defined on the intervalfx, Lg.
Since the potential well has been chosen to be suf

ciently deep, the distributionsBsxd andSsxd are very simi-
lar to each other and both are dominated at the botto
of the well. Therefore, based on the relation between t
MFPT and the MIT,ta ­ I fL $ Ssxdg can be well ap-
proximated byFLfL ! Bsxdg 2 W0fLg, leading to the
approximate relation that the IRT for the absorbing ba
rier is shorter than that for the reflecting barrier by abo
the MWT at the top,

ta ø tr 2 W0fLg . (12)

This relationship has a nice physical interpretation.ta is
not only the IRT of the probability density for the absorb
ing barrier, but also the relaxation time of the probabilit
current leading to the top of the barrier. Thus, for th
reflecting barrier a probability current leading to the to
also relaxes during the timeta, but due to the reflecting
boundary condition the probability that has reached th
top is not absorbed, but spends about the MWT at the t
before flowing back to the bottom. Therefore, to build u
the equilibrium distribution at the top takes about the su
of ta andW0fLg. In most casesW0fLg is much smaller
thantr , in agreement with our expectations that the IR
for the absorbing barrier can usually be well approximate
by the IRT for the reflecting barrier.

Finally, let us consider an example when the IRT clear
separates the adiabatic and nonadiabatic regimes. T
subject of our examination is the MFPT over a fluctuatin
barrier [4,6,7]. Let us use again the potential well depicte
in Fig. 1b, for a fixed parameterE ­ 1, and apply a
dichotomously fluctuating force between1F and2F with
amplitudeF ­ 0.5 and flipping raten. The MFPT from
the bottom to the top can be calculated analytically (fo
any dichotomously fluctuating piecewise linear potenti
[6]) and is plotted in Fig. 3 (solid line) as a function o
the flipping rate. The MFPT in the adiabatic limit can
also be calculated from Kramers’ rate theory. The resu
for our potential well (dotted line) starts to deviate from
2626
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the exact solution at aroundn ­ 1021, which coincides
with the inverse of the IRT (left vertical bar), confirmin
our expectation that the adiabatic approximation is va
only when the modulation of the potential is much slow
than the inverse of the IRT. Since our potential we
contains an additional local minimum, we can make
further check. Let us consider the two subwells separat
and apply the rate theory for a system with two states. N
the result (dashed line) starts to deviate from the ex
solution at a much larger flipping rate (aroundn ­ 102)
that corresponds to the maximum of the IRTs in the tw
subwells (right vertical bar).

We have presented a consistent picture of the intraw
relaxation based on the MFPT. Our new definition for t
IRT represents the slowest relaxation within an interv
because it incorporates passage from the end points
the interval through the intervening terrain. Thus, th
quantity is appropriate for describing the equilibration
the probability distribution in the entire potential; i.e
after this time the probability distribution can safely b
considered to be equilibrated at every position irrespect
of the initial condition. As a consequence, our definitio
for IRT gives the correct criterion for the applicability o
Kramers’ rate theory. Other quantities such asl

21
1 and

tcorr provide better estimates of the relaxation of fas
processes, such as equilibration near the bottom of
potential, but may severely underestimate the relaxat
time at the rarely visited places.

FIG. 3. Log-log plot of the MFPT from the bottom to the
top of the potential of Fig. 1(b) (forE ­ 1) as a function
of the flipping raten of an applied dichotomously fluctuating
force between1F and 2F with amplitude F ­ 0.5. The
adiabatic approximations (dashed and dotted lines) start
deviate from the exact solution (solid line) at the inverse
the corresponding IRTs (vertical bars).
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We expect that our result will be important for a num
ber of systems where potential change or fluctuation
involved, such as for Brownian ratchets [8], where th
characteristic frequency of the fluctuation should be larg
enough to achieve fast transport, but not larger than t
inverse of the IRT, above which the system “feels” the av
erage potential and the transport vanishes.
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