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Zénó Farkas1,2, Imre Derényi1 and Tamás Vicsek1

1 Department of Biological Physics, Eötvös University, Pázmány P Stny 1A,
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Abstract
The dynamics of polymer translocation through a pore has been the subject
of recent theoretical and experimental works. We have considered theoretical
estimates and performed computer simulations to understand the mechanism of
DNA uptake into the cell nucleus, a phenomenon experimentally investigated
by attaching a small bead to the free end of the double helix and pulling
this bead with the help of an optical trap. The experiments show that the
uptake is monotonic and slows down when the remaining DNA segment
becomes very short. Numerical and analytical studies of the entropic repulsion
between the DNA filament and the membrane wall suggest a new interpretation
of the experimental observations. Our results indicate that the repulsion
monotonically decreases as the uptake progresses. Thus, the DNA is pulled
in either (i) by a small force of unknown origin, and then the slowing down
can be interpreted only statistically, or (ii) by a strong but slow ratchet
mechanism, which would naturally explain the observed monotonicity, but then
the slowing down requires additional explanations. Only further experiments
can unambiguously distinguish between these two mechanisms.

1. Introduction

In eukaryotic cells molecular transport between the nucleus and the cytoplasm takes place
through the nuclear pore complexes (NPCs) [1, 2]. Ions and small proteins can diffuse through
these large channels, but large proteins and protein–RNA complexes are transported actively
via a signal-mediated process. DNA, on the other hand, is rarely transported under normal
circumstances. However, this latter process might be relevant during viral infection or genetic
therapy. In a recent elegant experiment the uptake of single DNA molecules into the nucleus
was studied by the group of Elbaum [3]. In the present paper we provide a computational and
theoretical study to understand and interpret the results of this experiment.
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Figure 1. Kinetic measurement of DNA uptake. (A) The nucleus being dragged after a 3 µm
diameter bead, linked by a DNA molecule. The time intervals between recording the images are 532
and 302 s, respectively. Note the shortening of the extended length of the DNA. (B) Measurements
of the extended length versus time. The data were collected from many measurements. Since the
initial moment of association between the DNA and the nuclear pore was unknown, all data were
fitted to a common master curve (after [3]).

2. Description of the experiment

In the experiment double-stranded bacteriophage λ DNA was transported into cell-free nuclei
of Xenopus laevis eggs. The DNA molecules were linked to polystyrene beads of 1 or 3 µm.
Beads lying near a nucleus were trapped by optical tweezers and pulled away. In some cases
dragging the bead pulled the whole nucleus behind it at a distance (figure 1(A)). After the bead
was released, it started a biased Brownian motion due to thermal fluctuations and its attachment
to the DNA segment. Such stretches were repeated on the same bead at 2 min intervals, and
the maximum extension decreased with each measurement (figure 1(B)). This suggests that
some mechanism inside the nucleus pulled the DNA inward. The remaining extended length
versus time curve has two main features: (i) it starts linearly, and (ii) the length does not go
to zero; instead, it converges to about 1 µm. The uptake itself is very slow (compared to the
timescale of biochemical processes in living organisms); it takes several hundred seconds for
a 10 µm long DNA.

3. Theoretical estimates for the entropic forces

To explain the convergence of the remaining length versus time curve and to give some
estimations for the uptake force and the effective friction coefficient of the pore, Salman et al [3]
proposed a model in which the shrinking remaining segment of the DNA applies an increasing
resistance against the uptake. They argue that because the entropic spring constant of a chain
of length L is proportional to L−1 and the average separation of the two ends of the remaining
DNA segment (caused by volume exclusion by the bead and the nucleus) is proportional to
L1/2, the resulting entropic repulsion diverges as their product, L−1/2.
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Figure 2. Lattice chains of length L = 13a, depicted in 2D. One end of the chains is anchored to
the membrane at point A, while the other end is either (a) free, or (b) bound to a mobile wall. The
figures indicate how to construct the mirror configuration (light grey curves) of a configuration not
allowed by the constraints (dark grey curves).

However, a detailed statistical analysis (described below) shows the opposite: the entropic
repulsion imposed by the shrinking DNA segment decreases as −L−1. This result makes it
necessary to reconsider the proposed kinetics of the uptake of DNA by the nucleus.

It has long been known that a polymer of length L, anchored at one of its ends to a wall
(with the other end being free), pulls on the wall with the force

Ffree ended = F∞
free ended − (1 − γ )

kBT

L
(1)

at the anchoring point, on average [4–6]. T denotes the absolute temperature, kB is the
Boltzmann constant and the length independent force term F∞

free ended > 0 depends on the
means of anchoring and on other properties of the polymer. γ ≈ 0.69 for self-avoiding and
γ = 1/2 for non-self-avoiding polymers. Due to force balance the rest of the polymer pushes
the wall with the same amount of force.

Below we show that for non-self-avoiding polymers equation (1) can be obtained in a
way much simpler than the original derivation, using a simple lattice chain model. Then we
develop further this approach to take into account the role of the bead.

If the persistence length of the polymer is Lp, the lattice constant of the equivalent three-
dimensional lattice chain is a = 2Lp, which is called the Kuhn length [7]. Let us suppose that
the wall is located at the x = 0 plane, and the anchoring point is at the origin A = (0, 0, 0), as
depicted in figure 2. The constraint that the chain is not allowed to pierce through the wall is
modelled by the condition that none of the x coordinates of the chain points can be negative:
0 � xi , where 0 � i � N and N = L/a is the number of Kuhn segments. The partition
function Z of this system is simply the sum of all possible chain configurations that satisfy the
above condition.

Let us choose an arbitrary point B in the 0 � x half-space. According to the so-called
reflection principle, each configuration that connects A and B but does not satisfy the constraint
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has one and only one ‘mirror configuration’ that connects A′ = (−2a, 0, 0) and B. Illustrated
in figure 2(a), the mirror configuration is obtained by reflecting every chain point from A to
the first unsatisfied point about the x = −a plane. Denoting the number of unconstrained
configurations that connect points P and Q by N (P → Q), the partition function can be
expressed as

Z =
∑

xN �0,yN ,zN

{N [A → (xN , yN , zN )] − N [A′ → (xN , yN , zN )]}, (2)

where each configuration that is counted mistakenly in the first term is cancelled by its mirror
configuration in the second term. The partition function can further be written as

Z =
∑

xN �0,yN ,zN

{N [A → (xN , yN , zN )] − N [A → (xN + 2a, yN , zN )]}

=
∑

xN ∈{0,a},yN ,zN

N [A → (xN , yN , zN )]

≈ (2d)NP(0 � xN < 2a) ≈ (2d)N 2aρ(0), (3)

where d = 3 is the dimension of the space, P(0 � xN < 2a) is the probability that
the chain ends between the planes x = 0 and 2a in the continuum limit and ρ(x) =
(2πσ 2)−1/2 exp[−x2/(2σ 2)] is the probability density of the x coordinate of the end position
with σ 2 = a2 N/d . The approximations are valid for large N .

Thus, the partition function can be expressed as

Z ≈ π−1/2(2d)N

(
2d

N

)1/2

, (4)

the free energy is

F = −kBT ln(Z) (5)

and the force acting on the anchored end of the chain is

Ffree ended = −∂F
∂L

= − 1

a

∂F
∂ N

≈ kBT
ln(2d)

2Lp
− 1

2

kBT

L
, (6)

in agreement with equation (1).
In the experiments, however, the distal end of the polymer is not free, but is bound to

a polystyrene bead. Because the bead is large compared to the remaining DNA coil when
the uptake stalls, we can approximate it with a mobile wall. The lattice chain calculation
can be repeated even for this system. The partition function, i.e., the number of allowed
configurations, is now

Z =
∑

xN �0,yN ,zN

{N [A → (xN , yN , zN )] − N [A′ → (xN , yN , zN )]

− N [A → (xN + 2a, yN , zN )] + N [A′ → (xN + 2a, yN , zN )]}, (7)

where the first two terms are from equation (2), the third term—based on the reflection
principle again (see figure 2(b))—cancels all configurations that go beyond the end point
(xN , yN , zN ) and the fourth term compensates for those configurations that have been cancelled
twice (in both the second and the third terms). Replacing N [A′ → (xN , yN , zN )] by
N [A → (xN + 2a, yN , zN )] and N [A′ → (xN + 2a, yN , zN )] by N [A → (xN + 4a, yN , zN )]
and making further simplifications one arrives at

Z =
∑

xN ∈{0,a},yN ,zN

N [A → (xN , yN , zN )] −
∑

xN ∈{2a,3a},yN ,zN

N [A → (xN , yN , zN )]

≈ (2d)N 2a[ρ(0) − ρ(2a)] ≈ π−1/2(2d)N

(
2d

N

)3/2

, (8)
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Figure 3. The force exerted by the membrane as a function of the polymer length. The symbols
are the results of numerical simulations with b = 50 nm, averaged over ten 2 s long runs. The
curves are theoretical predictions (shifted upward to fit the data set).

leading to the entropic force

Fmobile wall ≈ kBT
ln(2d)

2Lp
− 3

2

kBT

L
, (9)

which indicates that a bead (or mobile wall) attached to the end of the DNA renders the entropic
resistance even smaller. This can be understood intuitively by noticing that near the end of the
uptake process the geometric constraints drastically reduce the available configuration space
for the remaining segment, so it becomes more and more favourable for the DNA to slide
through to the other side of the membrane.

Although the reflection principle can only be applied to non-self-avoiding polymers, we
expect a qualitatively similar behaviour for self-avoiding ones, too. In this latter case the
reduction of the configuration space should also decrease the entropic resistance.

To verify our theoretical estimations we have performed numerical simulations. As figure 3
indicates, the numerical results for the free ended filament and for the one with the mobile wall
are in good agreement with the relevant terms −kBT/(2L) and −3kBT/(2L) of the theoretical
predictions, respectively. The case with the polystyrene bead, just as expected, is in between
the above two extremes, closer to the one with the mobile wall.

4. Simulation technique

We modelled the double-stranded DNA as a three-dimensional ‘bead–rod’ chain [7], and used
molecular dynamics simulations to follow its dynamics (see figure 4). Note that the ‘beads’ of
the bead–rod chain are artificial units and have nothing to do with the polystyrene bead in the
real experiment. Monte Carlo methods were ruled out because they usually fail to reproduce
the correct dynamics.

The overdamped equations of motion of the beads are

�Ṙ j = F constr
j + F bend

j + F metr
j + F ext

j + ξ j , (10)

where � is the friction coefficient and R j is the position of the j th bead (1 � j � N + 1).
The bond vectors can be defined as r j = R j+1 − R j (for 1 � j � N). The forces on the rhs
of the equations are as follows.
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Figure 4. Discretized polymer: the beads are connected by the rigid rods (bonds), and the bending
elasticity is taken into account by angular springs.

• F constr
j is the constraint force. These forces are responsible for keeping the length of the

rods (or bonds) fixed: |r j | = b. The constraint forces can be decomposed into the bond
tension forces: F constr

j = F tens
j − F tens

j−1 with F tens
j = Tjr j and F tens

0 = F tens
N+1 = 0 [9]. The

tensions Tj represent N new variables; however, we have exactly this number of additional
equations expressing that the bond lengths are constant: r j · ṙ j = 0.

• F bend
j is the bending force. The bending resistance is represented by angular springs

between the adjacent bonds. The bending energy is Ebend = κ(b)

2b

∑N−1
i=1 θ2

i , where κ(b) is
the bond length dependent bending modulus,θi = arccos(ri ·ri+1/b2) is the included angle
between bonds i and i + 1. The bending force is thus F bend

j = −∇ j Ebend. In the literature
the bending modulus of the continuous polymer,κ0, is usually used to calculate the bending
energy even in a discretized polymer model. However, for a discretized bead–rod polymer
the bending modulus should depend on the bond length to give the correct statistics [8]. For
example, one would expect that for b = 2Lp the bending modulus disappears, recovering
the freely jointed chain model. A good approximation for the discretized bending modulus
is κ̂(b̂) ≈ 1 − b̂/6 + b̂2(4/π2 − 13/24)+ b̂3(1/6 − 2/π2) + b̂4/96, where b̂ = b/Lp is the
dimensionless bond length and κ̂(b̂) = κ(b)/κ0 is the dimensionless bending modulus.
The persistence length Lp of the polymer is related to the bending modulus through the
expression Lp = κ0/(kBT ). As expected, for b → 0, κ(b) → κ0, and for b = 2Lp,
κ(b) = 0.

• F metr
j is the metric or pseudo force, and is needed because the motion of a bead–rod chain

in a thermal bath is different from the limiting case of very stiff bonds [10–14]. The latter
is a better model for real biopolymers, and the metric force turns the rigid rods into very
stiff springs. F metr

j = −kBT∇ j ln
√|g|, where g is the metric tensor of the hypersurface

of the constrained N +1 beads in the originally 3(N +1)-dimensional configuration space.
The explicit form of this metric tensor for a linear bead–rod chain can be found in [10, 14].

• F ext
j is an optional external force acting on bead j . In the application presented in this

paper, the polystyrene bead is attached to the end of the polymer by applying an attracting
external force on the last polymer bead, while this bead and the wall of the nucleus exert
repelling forces on the polymer. In certain situations the bond length b might be too
large compared to the size of the surrounding objects. For example, in our simulation the
DNA molecule goes through a 10 nm wide pore embedded in a 100 nm thick membrane
wall, while the bond length is b = 100 nm. Because the DNA inside this narrow pore is
almost straight, it is not necessary to choose a finer discretization of the chain; however,
the forces should be monitored at a higher resolution. For this reason we introduced M
‘virtual’ beads along each rod, spaced uniformly. Their sole role is that external forces can
act on them, and they appropriately redistribute these forces to the original beads at both
ends of the bond they are sitting on. Hence, their presence improves the spatial resolution,
as far as the external forces are concerned. We used M = 10 in the simulations.
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• ξ j represents spatially and temporally uncorrelated thermal noise,obeying the fluctuation–
dissipation relation 〈ξ j (t)ξk(t

′)〉 = 6kBT �δ jkδ(t − t ′).

In our model we neglected the excluded volume effect for the DNA filament itself,
although we accounted for the exclusion of the filament by the polystyrene bead and the
nuclear membrane wall. Hydrodynamic interactions were also neglected.

In our simulations the persistence length was Lp = 50 nm and the friction coefficient of
the beads was � ≈ πηb, where the viscosity of the water is η = 10−3 kg s−1 m−1 and the
temperature is T = 300 K. We used the second-order Runge–Kutta (or midpoint) method to
solve the system of first-order ordinary equations [15]. The bond length b varied between 50
and 100 nm.

One can rely on the results of a dynamical simulation only if it is numerically stable.
Therefore, it is important to be aware of the physical processes that determine the largest
possible time step. In our case the diffusion of the polymer beads and the relaxation of the
angular springs pose an upper limit for the time step. The typical distance a diffusive particle
takes during time �t is �x = √

2D�t , where the diffusion constant is D = kBT/�. To
ensure that the typical change of the bond length is smaller than a small fraction εDb of the
bond length, the time step cannot be larger than

�tD = �̃ε2
D

2kBT
b3,

where �̃ = �/b is the friction coefficient per unit length. Here the constraint forces were
not taken into account. However, we expect that even with the constraint forces in effect the
numerical error is still proportional to the typical diffusive displacement of the beads in one
time step.

The relaxation time of the angular springs is [16]

τAS = �̃

6κ(b)
b4.

Apart from the prefactor, this can be easily seen from dimensional analysis. Thus, the time
step cannot be larger than �tAS = εASτAS either, where εAS 
 1. In our simulations we used
εD = εAS = 0.05. The maximum allowable time step is then the minimum of �tD and �tAS .

5. Discussion

A DNA filament threading through a nuclear pore is pulled by two opposing entropic forces
from the two sides of the membrane. If the media on the two sides are identical, the length
independent force terms cancel each other. Because the length dependent contributions (being
proportional to kBT/L) disappear quickly for large L, there must exist some active (energy
consuming) mechanism responsible for the pulling of the DNA. Since the integral of the length
dependent term (from Lp to the total length of the DNA) is of the order of only a few kBT ,
this force term is not even strong enough to trap the DNA in a configuration where almost the
entire DNA molecule is on one side of the membrane.

5.1. Chemical composition difference

The simplest way to implement an active pulling mechanism is to produce a difference between
the length independent terms of the entropic forces on the two sides of the membrane. This
can be achieved, e.g., via a difference in the ionic strengths or the pH values of the two media.
Even the simple lattice chain model can account for this effect if the chemical composition of
the medium affects the persistence length Lp of the DNA (see equations (6) and (9)).
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5.2. Ratchet mechanism

Another possibility for the pulling is based on a ratchet mechanism [17]. The ratchet
mechanism as a means of active transport was first proposed by the group of Oster [18, 19].
The idea is that inside the nucleus some kind of molecule is able to bind to the DNA with a rate
constant kon and to detach from it with a rate constant koff . When such a molecule is bound to
the DNA at some location, the DNA cannot slide back beyond this point.

Assuming that the possible binding sites for the molecule are separated by a distance b,
we can estimate the effective pulling force produced by this ratchet mechanism. The grand
canonical partition function per binding site is Z = 1 + e−(Eb−µ)/(kB T ), where Eb is the binding
energy and µ is the chemical potential for the molecule. The probability that the site is
unoccupied is poff = 1/Z, and the probability that it is occupied is pon = e−(Eb−µ)/(kB T )/Z.
Thus, the partition function can be written as Z = 1 + pon/poff = 1 + kon/koff . The
free energies of a binding site inside and outside the nucleus are Fin = −kBT lnZ and
Fout = −kBT ln 1 = 0, respectively. Finally, an effective pulling force can be defined as

Fratchet = −(Fin − Fout)/b = ln
(
1 + kon/koff

)
kBT/b. (11)

Note that this is the force necessary to stop the pulling. The pulling speed is proportional to
this effective force only if the equilibration time of the binding of the molecules (kon + koff)

−1

is shorter than the diffusion time of the DNA over the distance b. Otherwise the pulling speed
is smaller.

5.3. Friction in the pore

The friction of the DNA inside the nuclear pores can significantly slow down the uptake process.
Let us just estimate how long it would take for an entire DNA molecule to diffuse through
the pore if there were no friction inside. As long as the pore is shorter than the Kuhn length
(which is the case in our system), the diffusion can be envisioned as the subsequent diffusion
of N = LDNA/a Kuhn segments (where a = 2Lp is the Kuhn length). The diffusion time
of a Kuhn segment can be approximated as τK = (1/2)a2(πηa)/(kBT ), thus the diffusion
time of the entire DNA molecule is about τ = N2τK = L2

DNA Lp(πη)/(kBT ). As expected
for a polymer without self-exclusion, the diffusion time is proportional to the square of its
length [20].

The diffusion time τ for a 15 µm long DNA molecule is in the order of 10 s. Because
the uptake occurs much more slowly, in the order of 1000 s, the friction in the pore must be
at least 100-fold greater than the hydrodynamic friction: �pore > 100Lpπη ≈ 10−8 kg s−1.
Such a strong friction can be explained by weak binding of the DNA to the nuclear pore [21].

5.4. Uptake kinetics I: weak pulling

The experiments show that the uptake slows down in the end and the remaining length of the
DNA converges to Lconv ≈ 1 µm. A constant pulling force F (produced by either a chemical
composition difference or a ratchet mechanism) corresponds to a linear potential U(L) = F L
with a reflecting boundary at L = 0. In such a potential the expectation value of L at equilibrium
is given by kBT/F . Thus, the measured equilibrium distance Lconv is compatible with an
F = kBT/Lconv ≈ 4 fN pulling force. From the average pulling speed, v ≈ 2 × 10−8 m s−1,
one can also calculate the friction coefficient: �pore = F/v ≈ 2 ×10−7 kg s−1, which satisfies
the condition given in the preceding paragraph.

It would result in an even smaller pulling force and friction coefficient if the length
dependent term of the entropic force were also taken into account in the calculation of the
equilibrium distance.
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Figure 5. The uptake of a DNA filament. Its length is 8 µm, the bond length is b = 100 nm and
the radius of the polystyrene bead is Rb = 500 nm. The black dots represent occupied binding
sites. The horizontal bar in the bottom left corner corresponds to 1 µm. The grey scale indicates
the position in the third dimension (depth).

We studied the uptake process by the ratchet mechanism using numerical simulations. We
assumed that the molecules could bind only to the beads of the bead–rod chain. The simulations
started from a configuration in which one end of the DNA had already got through the pore,
and the first bead was not allowed to slip back through the pore. To mimic the experiment, a
large bead of radius Rb was attached to the other, outer end of the DNA. The diameter of the
pore was 10 nm, the width of the wall was 100 nm and the friction at the pore was neglected.
Figure 5 shows a sequence of such a simulation.

Identifying the extended length of the remaining DNA by its arc length, in figure 6
we plotted the extended length versus time curve, averaged over 20 runs. It resembles
the experimental curve: it starts linearly and converges to a constant value, about 1 µm,
which coincides with the experimental one. The timescale of the simulation is shorter than
that of the experiments, because we omitted the friction inside the pore, in order to save
computational time.

The negative side of this interpretation is that the uptake is stochastic. Individual runs
show back-slips at both the linear and the horizontal parts of the curve. The stationary state of
the system is not an energy minimum but a dynamic equilibrium between the fluctuations of the
DNA filament and the weak pulling of the transport mechanism. Since such fluctuations are
not apparent in the experiments, we examine another possibility for the kinetics of the uptake.

5.5. Uptake kinetics II: strong but slow ratcheting

A monotonic uptake can be achieved either by a strong continuous pulling in conjunction with a
strong friction or by a strong but slow ratchet mechanism. In such a ratchet mechanism the speed
of the uptake would be set by the small binding rate kon, and the even much smaller unbinding
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Figure 6. The remaining length of the DNA versus time curve. The parameters are kon = 0.1 s−1,
koff = 0.25 s−1, b = 100 nm, Rb = 0.2 µm and the total length of the DNA is 4.8 µm. The curve
is an average over 20 runs.

rate koff 
 kon would ensure that unbinding is negligibly rare and, thus, the ratcheting is
practically irreversible. Note that although the large kon/koff ratio corresponds to a large
effective (equilibrium) pulling force, it is not manifested in the speed of the uptake (which is
a non-equilibrium process).

Due to the negligibly rare unbinding events the ratchet mechanism is also supported by
the fact that the uptake can be stopped but never reversed in the experiments [3] by applying
picoNewton forces on the polystyrene bead. A continuous pulling would be incompatible with
this observation.

The only phenomenon that cannot be explained by such a ratchet mechanism is the
convergence of the remaining length to a non-zero value. There are, however, alternative
explanations for this:

• the non-zero distance might be an artifact of the image processing;
• there might be unknown structures on the nuclear envelope that prevent the polystyrene

bead from getting in contact with the nucleus;
• the picoNewton forces used to extend the DNA might be sufficiently strong to deform the

membrane by hundreds of nanometres at the vicinity of the pore [22, 23];

or a combination of these.

6. Conclusions

Our numerical and analytical studies of the uptake of DNA filaments into the nucleus suggest
two possible mechanisms for the uptake process. None of them can be ruled out on the basis of
existing experimental data. One of the mechanisms explains the convergence of the remaining
length of the DNA to a finite value, but has an intrinsically stochastic nature (back-slips occur).
This mechanism alone cannot account for the stopping of the uptake under retarding forces in
the picoNewton range. The other mechanism seems more plausible: it predicts a monotonic
uptake, but requires additional elements to explain the convergence. Only further experiments
can unambiguously distinguish between these mechanisms, focusing on their differences.
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