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Cooperative Transport of Brownian Particles

Imre Derényi* and Tamás Vicsek†

Department of Atomic Physics, Eötvös University, Budapest, Puskin u 5-7, 1088 Hungary
(Received 17 March 1995)

We consider the collective motion of finite-sized, overdamped Brownian particles (e.g., motor
proteins) in a periodic potential. Simulations of our model have revealed a number of novel cooperative
transport phenomena, including (i) the reversal of direction of the net current as the particle density is
increased and (ii) a very strong and complex dependence of the average velocity on both the size and
the average distance of the particles.

PACS numbers: 05.60.+w, 05.40.+j, 87.10.+e
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The most common and best known transport pheno
ena occur in systems in which there exist macrosco
driving forces or gradients of potentials of various orig
(typically due to external fields or concentration grad
ents). However, recent interesting theoretical and exp
mental studies have shown that nonequilibrium dissipat
processes in structures possessing vectorial symmetry
induce macroscopic motion on the basis of purely mic
scopic effects [1–10].

This newly suggested mechanism is expected to
essential for biological transport processes such as
operation of molecular combustion motors or the contr
tion of muscle tissues. In these cases Brownian partic
(myosin, kinesin, and dyenin) convert the energy of AT
molecules into mechanical work while moving along pe
odic structures (myosin along actin filaments, kinesin a
dyenin along microtubules) [11–13]. A transport mech
nism of this kind has also been experimentally demo
strated in simple physical systems [14,15].

So far the models for the transport of Brownia
particles in periodic structures have been based on
description of the motion of one single particle, but in re
systems one can rarely find this situation. Experimen
evidence shows that several motor proteins can carry
larger molecule, and a large number of free motors c
move along the same microtubule [11]. Furthermo
in separation processes a large number of particles
moving in the same medium [14].

Therefore we propose a simple one-dimensional mo
via many interacting Brownian particlesmoving with
overdamped dynamics in a periodic potential. Accordi
to our computer simulations the model displays a nu
ber of novel cooperative phenomena. (i) First we sh
that for a range of frequencies of aperiodicexternal driv-
ing force theaverage velocityy of the particleschanges
its directionas the number density of the particles is i
creased. (ii) In addition,y has a sensitive dependence o
the sizeof the migrating particles. This effect is demon
strated for two kinds (periodic and constant) of drivin
forces. In the last part of the paper we present anal
cal results indicating that in the case ofconstantdriving
force and nearly zero distance between the particles
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dependence of the velocity on the particle size becomes
extremely complex(nondifferentiable).

The motion of a single particle (in the absence of other
particles) is described by the Langevin equation

Ùxj ­ fsxjd 1 jjstd 1 Fjstd, j ­ 1, . . . , N , (1)

whereN is the number of particles,xj denotes the position
of the center of mass of thejth particle,fsxd ; 2≠xV sxd
is a force field due to the sawtooth shaped periodic po-
tential V sxd, jjstd is Gaussian white noise with the auto-
correlation functionkjjstdjist0dl ­ 2kTdj,idst 2 t0d, and
Fjstd is a “driving force” with zero time average, which
may be stochastic. Since in most of the experimental situ-
ations we can suppose that the interaction between two
particles can be well approximated with a hard core re-
pulsion, we assumed that theparticles are hard rods(see
Fig. 1). The hard core interaction means that during the
motion the particles are not allowed to overlap (a parti-
cle does not continue to move in its original direction if it
touches another one). This rule complements Eq. (1). All
particles have the same sizeb, while the period of the po-
tential isp ­ 1. The size of the system or in other words
the number of the periods isL. We have applied peri-
odic boundary conditions. The positions of the particles
were updated sequentially (one after another, from left to
right) using the finite difference version of (1). We have
checked other types of updatings (random, from right to

FIG. 1. Schematic picture of the system we consider showing
two particles with sizeb subject to the sawtooth shaped
periodic potentialV sxd. The period of the potential isp ­ 1,
where the lengths of the slopes arel1 ­ a and l2 ­ 1 2 a.
The potential difference between the top and the bottom isQ.
© 1995 The American Physical Society
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left), with no change in the results.N and L go to in-
finity, while LyN remains finite, but usuallyN ø 20 is
large enough. During the integration of (1)dt was typi-
cally equal to 0.0001. Most of the runs required seve
days on a fast IBM RISC 6000y375 workstation.

Our model is one dimensional because the mac
molecules serving as highways in biological transport c
be assumed to be linear representing well-defined trac
Thus, due to the hard core interaction, we also exclu
the possibility of “passing.” In higher dimensions (wher
the particles can get around each other) further effects
expected to take place. In addition to the case of perio
driving force, in the second part of the paper we sh
also consider the case of constant driving force, beca
the latter case is (i) conceptually simpler, thus, it allow
more direct interpretation of the simulational results a
the analytic treatment of some limiting cases and (ii)
zero-mean signal can always be constructed as an a
nating (1F and2F) piecewise constant signal.

Normally, one single particle moves in the directio
corresponding to the smaller uphill slope of the potenti
However, there is a range of the parameters of t
periodic driving force for which the particle migrates
into the opposite direction [4–7]. In this regime w
have found thatthe gradual addition of particlesinto the
systemresults in the change of their average velocityback
to the “normal” direction. We have tested this result fo
several different cases (including driving forces period
in time [7] and distributed according to “kangaroo
statistics [4]), and we have found that this change of t
current’s direction is a universal property of the collectiv
motion in our model. Figure 2 shows a simple examp
where the driving forces areFjstd ­ A sinsvjtd and the
vj values are chosen randomly around a fixed valuev

FIG. 2. The plot of the average velocityy as a function of the
average frequencyv of the sinusoidal driving forces for three
different values of the average coveringr ; bNyL. The inset
demonstrates the reversal of the particle currentJ ; yNyL as
a function of the average coveringr, for v ­ 175. (Q ­ 4,
a ­ 0.8, b ­ 0.5, T ­ 1, and the amplitude of the driving
forcesA ­ 32.)
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with a dispersion of several percentage ofv (to avoid
synchronization). The plot shows the average velocity
as a function ofv, for various values of the average
covering defined asr ; bNyL (0 , r , 1). In the inset
we have plotted the fundamental diagram: the particle
currentJ ; yNyL as a function of the average covering
for v ­ 175.

Another interesting feature is observed if the average
distance between two neighboring particles is fixed (d ;
LyN 2 b ­ const) and we are changing the size of the
particles.

Before describing our results we mention that it is easy
to show that a system of lengthL consisting ofN particles
of sizek 1 b (0 # b , 1, k ­ 1, 2, . . .) is equivalent to
a system of lengthL 2 kN consisting ofN particles of
size b. Obviously, this kind of transformation has no
effect on the motion of particles, therefore, it is enough
to consider particles with sizes less than 1. In other
words, any quantity is a periodic function of the size of
the particles with period 1, i.e., with period equal to the
period of the underlying potential.

Figure 3 shows the average velocity as a function of
the size of the particles in the above mentioned case with
sinusoidal driving forces for various values ofv. The
velocity has very drastic changes. A large peak can be
observed forb somewhat smaller than 1, and a smaller
peak for b somewhat smaller than 1y2. In most of the
other cases we have studied, a large peak is observed
just beforeb reaches 1 or forb a bit larger than 0 (or
equivalently larger than 1), and a minimum (valley) on
the opposite side of this integer value. This structure is
repeated around 1y2, but on a smaller scale. Sometimes
this structure can be observed around 1y3 and 2y3.

Investigating the origin of this strange behavior of
the particle size dependence on the average velocity we

FIG. 3. The plot of the average velocityy as a function of
the size of the particlesb for three different values of the
frequency v of the sinusoidal driving forces. The average
distance between two neighboring particles isd ­ 0.5. (Q ­
4, a ­ 0.8, T ­ 1, andA ­ 32.)
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examine the simplest case when the driving force
stationary: Fjstd ­ F and smaller than the uphill gradie
of the potential.

Let us consider the case when the size of the parti
is somewhat less than 1 and there are two parti
in the neighboring valleys of the potential. Then t
second particle is not able to jump further ahead u
the first one jumps away. So the first one hinders
second one. Thus the average velocity is smaller t
the velocity of a single particle. Figure 4(a) shows t
situation for 15 particles. Avacancy typecurrent can
be observed, as a consequence of the traffic jams ar
from the hindering of particles. This phenomenon
also related to jams common in one-dimensional dri
diffusive systems and traffic models [16]. If the size
the particles is a bit larger than 1 and there are also
particles in the neighboring valleys, both of them can
be in the minimum in the same time, therefore, the fi
one has a larger chance to jump further. In this case
second one indirectly “pushes” the first one. (But the fi
one also hinders the second one.) Thus, in spite of
hindering effects, the average velocity can be larger t

FIG. 4. Motion of the particles in the space-time doma
The time increases from left to right and the particles
moving downwards under the influence of the stationary driv
force F. Horizontal lines represent the bottom of the poten
valleys, and the wide slanted line represents the average m
of a single noninteracting particle. (a) 15 particles with s
b ­ 0.833. A vacancy type current can be observed, a
consequence of the hindering effect of particles. The ave
velocity y is smaller than the average velocity of one sin
particle. (b) 12 particles with sizeb ­ 1.166. There are no
jams, and the density waves show that the particles assist
other in jumping over to the next valley.y is larger than the
velocity of a single particle. The average distance betw
particles isd ­ 0.5 in both cases.
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the velocity of a single particle. This situation can be
seen in Fig. 4(b) for 12 particles. There are no jams and
the density waves show that the particles help each other
to jump through to the next valley. In case of slowly
alternating external forces these effects (hindering and
pushing) are expected to influence the net transport.

Figure 5(a) shows the average velocity as a function of
the size of the particles in this stationary case, for various
values of the average distanced ; LyN 2 b between
two neighboring particles. Whend is infinity, the velocity
is independent of the size of the particles, and identical to
the velocity of a single particle. Decreasingd a velocity
peak starts to develop ford just larger thanb ­ 0,
and a valley appears forb close to, but smaller than
b ­ 1. This was explained in the previous paragraphs.
As d is further decreased, another peak appears beyond
b ­ 1y2 and also a valley beforeb ­ 1y2. This can
also be explained in the above mentioned manner, taking
into consideration that two particles can sit in the same
potential valley ifb ø 1y2, and we can handle them as
one particle with sizeb ø 1. Decreasing the average

FIG. 5. The average velocityy as a function of the size
of the particlesb, when the driving force is stationary with
F ­ 4. (a) The plot for different values of the average distance
between two neighboring particles:d ­ ` (one single particle,
the horizontal line) andd ­ 0.6, 0.4, 0.2, 0.1, 0.05, 0.025.
(b) The plot in the limit when the average distance between two
particles goes to zero. This discontinuous function has sharp
minima for b rational and a value equal toF if b is irrational.
(Q ­ 4, a ­ 0.2, andT ­ 1.)
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distance further, valleys and peaks appear before and
b ­ 1y3 (three particles in one potential valley),b ­ 2y3
(three particles in two potential valleys), and so on
(almost) any rational value ofb.

If the sum of the average distance and the siz
the particles is a rational value, i.e.,b 1 d ­ nym, we
can say that the structure iscommensurate. For d ø 1
the particles are distributed evenly andm particles can
be found in n potential valleys. The minimum of th
potential energy of the system is realized if everymth
particle is sitting in the bottom of the potential valle
Then, for F ­ 0, each particle has to jump a distan
1ym to reach the next minimum energy state of
system. Simple algebra shows that such a system
which N particles are playing the role of a single partic
can also be described in terms of a modified sawt
potential with a periodp0 ­ 1ym, where the lengths o
the slopes arel0

1 ­ hmajym and l
0
2 ­ hms1 2 adjym.

The potential difference between the top and bottom s
is NQ0, where

Q0 ­ Q
hmaj hms1 2 adj

mams1 2 ad
. (2)

The notationh· · ·j means the fractional part of the va
between the braces.

Thus, in the presence of the driving forceF, we can
calculate the average velocity as the velocity of a si
particle using the formula derived by Magnasco [1] w
parametersQ0, l

0
1, l

0
2, F0 ­ F, andT 0 ­ TyN (T 0 ! 0

for N ! `).
However, if the structure is incommensurate and

average distance is small, the corresponding mod
potential of the whole system is almost flat and the sy
has a continuous translation symmetry. Therefore
particles can move with almost the maximum velo
ymax ­ F.

The modified potential is also flat (or almost flat), if
structure is commensurate butma is an integer numbe
(or close to an integer number). This is the reason
we cannot see a valley before 1y5, 2y5, 3y5, and 4y5 on
Fig. 5(a) as a consequence ofa ­ 0.2.

Correspondingly, decreasing the average distanc
tween the particles the minima of the valleys tend to
rational values. The values of the minima go to the va
calculated from Magnasco’s formula, and the width of
valleys goes to zero. For the other cases the velocity
to ymax ­ F. In the limit when the average distance
zero, we get a strange, discontinuous function with s
minima for b rational and a value equal toF if b is irra-
tional [Fig. 5(b)].

In conclusion, we have demonstrated that taking
account the interaction of Brownian particles migra
via overdamped dynamics along periodic structures
after
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sults in a variety of novel cooperative effects. Among
other possible applications, our results are expected to be
pertinent from the point of biological transport involv-
ing finite density of protein molecules moving along sub-
strates made of macromolecules. In particular, we have
found a strong dependence of the average current on the
particle size for sizes close to the period of the under-
lying potential. If thermal ratchet type models represent
an adequate description of biological transport, our latter
result is likely to be relevant in the understanding of the
behavior of such molecular motors as kinesin or dyenin,
since their size and the period of the corresponding mi-
crotubules are comparable (see, e.g., Ref. [12]). Effects
caused by the finite size of the transported objects (e.g.,
other proteins, mitochondria, visualizing beads) represent
potential subjects for further studies.
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