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Cooperative Transport of Brownian Particles
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We consider the collective motion of finite-sized, overdamped Brownian particles (e.g., motor
proteins) in a periodic potential. Simulations of our model have revealed a number of novel cooperative
transport phenomena, including (i) the reversal of direction of the net current as the particle density is
increased and (ii) a very strong and complex dependence of the average velocity on both the size and
the average distance of the patrticles.

PACS numbers: 05.60.+w, 05.40.+j, 87.10.+e

The most common and best known transport phenomdependence of the velocity on the particle size becomes
ena occur in systems in which there exist macroscopiextremely complefnondifferentiable).
driving forces or gradients of potentials of various origin  The motion of a single particle (in the absence of other
(typically due to external fields or concentration gradi-particles) is described by the Langevin equation
ents). Howgver, recent interesting theqrgtigal aqd gxp(_eri- X = fx) + &) + F0), i=1,...,N, Q)
mental studies have shown that nonequilibrium dissipative . . ' T .
ereN is the number of particles, denotes the position

rocesses in structures possessing vectorial symmetry c .
P D g y y of the center of mass of thgh particle,f (x) = —d,V(x)

induce macroscopic motion on the basis of purely micro-
scopic effects [1_p10]. purely is a force field due to the sawtooth shaped periodic po-

This newly suggested mechanism is expected to béential V.(x)’ fi(r? is Gaussia}n white noise with Ehe auto-
essential for biological transport processes such as th(g)rrelgtlor!‘;u_nt_:norf(fj(t)nfi(.t r)1> - 2"?‘31’1‘5“ — 1), a?:.j h
operation of molecular combustion motors or the contract /(?) iS @ “driving force” with zero time average, which
may be stochastic. Since in most of the experimental situ-

tion of muscle tissues. In these cases Brownian particles . ;
(myosin, kinesin, and dyenin) convert the energy of A-|-F,at|ons we can suppose that the interaction between two

molecules into mechanical work while moving along peri—partICIes can be well approximated with a hard core re-

odic structures (myosin along actin filaments, kinesin ancPPISion' we assumed thz.it tlparti_cles are hard rodis_ee
dyenin along microtubules) [11—13]. A transport mechat19- 1). The hard core interaction means that during the

nism of this kind has also been experimentally demoniMotion the particles are not allowed to overlap (a parti-
strated in simple physical systems [14,15] cle does not continue to move in its original direction if it

So far the models for the transport of Brownian fouches another one). This rule complements Eq. (1). All

particles in periodic structures have been based on th‘?;\f’"t_ic:e_S ha_ve th$hsa”?e sibfe\r/]vhile the period oLthe po;j
description of the motion of one single particle, but in realtﬁntla 'Sg - lf' h € S'?edo the systehm orin O}. edr words
systems one can rarely find this situation. Experimentai® Number of the periods &. We have applied peri-

evidence shows that several motor proteins can carry orfdfic boundary conditions. The positions of the particles
larger molecule, and a large number of free motors cayere updated sequentially (one after another, from left to

move along the same microtubule [11]. Furthermore,right) using the finite difference version of (1). We have

in separation processes a large number of particles afd'ecked other types of updatings (random, from right to
moving in the same medium [14].

Therefore we propose a simple one-dimensional model v
via many interacting Brownian particlesnoving with I
overdamped dynamics in a periodic potential. According
to our computer simulations the model displays a num-
ber of novel cooperative phenomena. (i) First we show Q
that for a range of frequencies ofpariodic external driv- b
ing force theaverage velocitw of the particleschanges
its directionas the number density of the particles is in- X
creased. (ii) In additiony has a sensitive dependence on i 1a
the sizeof the migrating particles. This effect is demon-

strated for two kinds (periodic and constant) of driVingtwo particles with sizeb subject to the sawtooth shaped

forces. In _the_ Ias_t part Of_ the paper we presen't _analytiberiodic potentialV (x). The period of the potential ip = 1,
cal results indicating that in the case adnstantdriving  where the lengths of the slopes ate = a and A, = 1 — a.

force and nearly zero distance between the particles thehe potential difference between the top and the bottod.is

FIG. 1. Schematic picture of the system we consider showing
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left), with no change in the resultsV andL go to in-  with a dispersion of several percentage ©f(to avoid
finity, while L/N remains finite, but usualliy = 20 is  synchronization). The plot shows the average velocity
large enough. During the integration of (8) was typi- as a function ofw, for various values of the average
cally equal to 0.0001. Most of the runs required severatovering defined ag = bN/L (0 < p < 1). Inthe inset
days on a fast IBM RISC 600375 workstation. we have plotted the fundamental diagram: the particle
Our model is one dimensional because the macroeurrent/ = vN/L as a function of the average covering
molecules serving as highways in biological transport carfior v = 175.
be assumed to be linear representing well-defined tracks. Another interesting feature is observed if the average
Thus, due to the hard core interaction, we also excludeistance between two neighboring particles is fixeéd<(
the possibility of “passing.” In higher dimensions (where L/N — b = const) and we are changing the size of the
the particles can get around each other) further effects argarticles.
expected to take place. In addition to the case of periodic Before describing our results we mention that it is easy
driving force, in the second part of the paper we shallto show that a system of lengthconsisting ofV particles
also consider the case of constant driving force, becaus# sizek + b (0= b < 1,k = 1,2,...) is equivalent to
the latter case is (i) conceptually simpler, thus, it allowsa system of lengtl. — kN consisting ofN particles of
more direct interpretation of the simulational results andsize b. Obviously, this kind of transformation has no
the analytic treatment of some limiting cases and (ii) aeffect on the motion of particles, therefore, it is enough
zero-mean signal can always be constructed as an altele consider particles with sizes less than 1. In other
nating (+F and—F) piecewise constant signal. words, any quantity is a periodic function of the size of
Normally, one single particle moves in the directionthe particles with period 1, i.e., with period equal to the
corresponding to the smaller uphill slope of the potentialperiod of the underlying potential.
However, there is a range of the parameters of the Figure 3 shows the average velocity as a function of
periodic driving force for which the particle migrates the size of the particles in the above mentioned case with
into the opposite direction [4-7]. In this regime we sinusoidal driving forces for various values @&f. The
have found thathe gradual addition of particlegto the  velocity has very drastic changes. A large peak can be
systenresults in the change of their average velotiack  observed forb somewhat smaller than 1, and a smaller
to the “normal” direction. We have tested this result forpeak forb somewhat smaller than/2. In most of the
several different cases (including driving forces periodicother cases we have studied, a large peak is observed
in time [7] and distributed according to “kangaroo” just beforeb reaches 1 or for a bit larger than 0 (or
statistics [4]), and we have found that this change of theequivalently larger than 1), and a minimum (valley) on
current’s direction is a universal property of the collectivethe opposite side of this integer value. This structure is
motion in our model. Figure 2 shows a simple exampleyepeated around/2, but on a smaller scale. Sometimes
where the driving forces arf;(r) = Asin(w;t) and the this structure can be observed aroun@ and 2/3.
w; values are chosen randomly around a fixed value Investigating the origin of this strange behavior of
the particle size dependence on the average velocity we
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FIG. 2. The plot of the average velocityas a function of the
average frequency of the sinusoidal driving forces for three
different values of the average coveripg= bN/L. Theinset FIG. 3. The plot of the average velocity as a function of
demonstrates the reversal of the particle curtest vN/L as  the size of the particle$ for three different values of the
a function of the average covering for o = 175. (Q = 4, frequency w of the sinusoidal driving forces. The average
a=0.8, b =05, T =1, and the amplitude of the driving distance between two neighboring particles/is= 0.5. (Q =
forcesA = 32.) 4,a =08,T = 1,andA = 32.)

375



VOLUME 75, NUMBER 3 PHYSICAL REVIEW LETTERS 173JLy 1995

examine the simplest case when the driving force ighe velocity of a single particle. This situation can be
stationary F;(r) = F and smaller than the uphill gradient seen in Fig. 4(b) for 12 particles. There are no jams and
of the potential. the density waves show that the particles help each other
Let us consider the case when the size of the particle® jump through to the next valley. In case of slowly
is somewhat less than 1 and there are two particlealternating external forces these effects (hindering and
in the neighboring valleys of the potential. Then thepushing) are expected to influence the net transport.
second particle is not able to jump further ahead until Figure 5(a) shows the average velocity as a function of
the first one jumps away. So the first one hinders thehe size of the particles in this stationary case, for various
second one. Thus the average velocity is smaller thamalues of the average distande= L/N — b between
the velocity of a single particle. Figure 4(a) shows thistwo neighboring particles. Whehis infinity, the velocity
situation for 15 particles. Avacancy typecurrent can is independent of the size of the particles, and identical to
be observed, as a consequence of the traffic jams arisirthe velocity of a single particle. Decreasidg velocity
from the hindering of particles. This phenomenon ispeak starts to develop fo# just larger thanb = 0,
also related to jams common in one-dimensional driverand a valley appears fob close to, but smaller than
diffusive systems and traffic models [16]. If the size ofb = 1. This was explained in the previous paragraphs.
the particles is a bit larger than 1 and there are also twés d is further decreased, another peak appears beyond
particles in the neighboring valleys, both of them cannoth = 1/2 and also a valley beforé = 1/2. This can
be in the minimum in the same time, therefore, the firstalso be explained in the above mentioned manner, taking
one has a larger chance to jump further. In this case thmto consideration that two particles can sit in the same
second one indirectly “pushes” the first one. (But the firstpotential valley ifb = 1/2, and we can handle them as
one also hinders the second one.) Thus, in spite of thene particle with sizeb = 1. Decreasing the average
hindering effects, the average velocity can be larger than
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FIG. 4. Motion of the particles in the space-time domain. )
The time increases from left to right and the particles are
moving downwards under the influence of the stationary driving 0 — e
force F. Horizontal lines represent the bottom of the potential 0 0.2 0.4 b 06 08 1

valleys, and the wide slanted line represents the average motion

of a single noninteracting particle. (a) 15 particles with sizeFIG. 5. The average velocity as a function of the size

b = 0.833. A vacancy type current can be observed, as ef the particlesb, when the driving force is stationary with
consequence of the hindering effect of particles. The averag€ = 4. (a) The plot for different values of the average distance
velocity v is smaller than the average velocity of one singlebetween two neighboring particled:= « (one single particle,
particle. (b) 12 particles with sizé = 1.166. There are no the horizontal line) and/ = 0.6, 0.4, 0.2, 0.1, 0.05, 0.025.
jams, and the density waves show that the particles assist ea¢b) The plot in the limit when the average distance between two
other in jumping over to the next valleyv is larger than the particles goes to zero. This discontinuous function has sharp
velocity of a single particle. The average distance betweeminima for b rational and a value equal # if 4 is irrational.
particles isd = 0.5 in both cases. (Q=4,a=02,andT = 1))
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distance further, valleys and peaks appear before and afteults in a variety of novel cooperative effects. Among
b = 1/3 (three particles in one potential valley),= 2/3  other possible applications, our results are expected to be
(three particles in two potential valleys), and so on afpertinent from the point of biological transport involv-
(almost) any rational value df. ing finite density of protein molecules moving along sub-

If the sum of the average distance and the size o$trates made of macromolecules. In particular, we have
the particles is a rational value, i.éh,+ d = n/m, we  found a strong dependence of the average current on the
can say that the structure é@mmensurate Ford < 1 particle size for sizes close to the period of the under-
the particles are distributed evenly and particles can lying potential. If thermal ratchet type models represent
be found inn potential valleys. The minimum of the an adequate description of biological transport, our latter
potential energy of the system is realized if evetyh  result is likely to be relevant in the understanding of the
particle is sitting in the bottom of the potential valleys. behavior of such molecular motors as kinesin or dyenin,
Then, for F = 0, each particle has to jump a distancesince their size and the period of the corresponding mi-
1/m to reach the next minimum energy state of thecrotubules are comparable (see, e.g., Ref. [12]). Effects
system. Simple algebra shows that such a system (ioaused by the finite size of the transported objects (e.g.,
which N particles are playing the role of a single particle) other proteins, mitochondria, visualizing beads) represent
can also be described in terms of a modified sawtootipotential subjects for further studies.
potential with a periodp’ = 1/m, where the lengths of The authors are grateful to A. Ajdari and T. Geszti for
the slopes are\] = {ma}/m and A5 = {m(1 — a)}/m.  useful discussions. The present research was supported
The potential difference between the top and bottom statdsy Hungarian Research Grant No. T4439.

is NQ', where
mam(l — a)

The notation{- - -} means the fractional part of the value frEIectroni.c address: derenyi@nhercules.elte.hu
between the braces. Electronic address: h845vic@ella.hu
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