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Imre Derényi 1,* and Armand Ajdari2,†
1Department of Atomic Physics, Eo¨tvös University, Budapest, Puskin u 5-7, 1088 Hungary

2Laboratoire de Physico-Chimie The´orique, ESPCI, 10 rue Vauquelin, F-75231 Paris Ce´dex 05, France
~Received 2 April 1996!

We consider the collective motion of finite size Brownian particles induced by a one-dimensional, spatially
asymmetric, periodic potential which is turned ‘‘on’’ and ‘‘off’’ dichotomously. The particles interact through
simple hard-core repulsion. We show analytically that this simple system exhibits an interesting collective
behavior:~i! the direction of motion can change many times as the density of particles is increased;~ii ! close
to the maximal density, the average velocity depends on the size of the particles in a very complex way, both
in sign and magnitude.@S1063-651X~96!50407-1#

PACS number~s!: 05.40.1j, 05.60.1w, 87.10.1e

Recent theoretical and experimental works have shown
that dissipative processes in structures possessing vectorial
symmetry can induce macroscopic average motion, even in
the absence of any macroscopic driving force or field gradi-
ent @1–9#. On the one hand, these studies may provide an
appropriate framework to analyze the operation of the motor
proteins in charge of, e.g., cellular transport or muscle con-
traction@10#. On the other hand, they can also lead to novel
separation techniques. Indeed, a man-made device that cre-
ates a spatially asymmetric periodic potential switched on
and off periodically in time was predicted to generate a net
current which is highly sensitive to the diffusion coefficient
of the particles@1#, a claim experimentally confirmed with
electrode devices@11,12# and optical tweezers@13#.

Recently, special attention has been paid to collective ef-
fects which are clearly important: in many biological situa-
tions numerous motors operate together, and in artificial
structures the effect of interactions is crucial for separation.
Two models have been recently studied:~i! finite size par-
ticles ~interacting through hard-core repulsion! in an asym-
metric potential tilted back and forth@14#; ~ii ! a collection of
motors, rigidly attached to each other, that independently
adsorb and desorb~i.e., switch from on to off! from a peri-
odic structure@15#. In both cases, collective effects lead to
new features.

In this paper we focus on a situation closer in spirit to
what would arise in one-dimensional~1D! artificial struc-
tures: we consider particles with hard-core repulsion, in an
asymmetric potential that is switched on and offat the same
time for all the particlesand that isat every instant flat on
large scales. This natural extension to many particles of the
on-off model of Ref.@1# also leads to a rich phenomenology.
In particular, for long enough duration of the ‘‘off’’ inter-
vals, we prove analytically that the average velocity can
change sign a few times as particle density is increased from
0 to 1, and that its sign and amplitude at high density is
extremely sensitive to the particles size. The outline of the
paper is as follows: we first introduce our model and the
considered regime. After recalling the low-density limit we

examine the high-density one. We then calculate how the
average velocity evolves between these two limits before
confirming our picture through simulations.

To set notations, we considerN overdamped Brownian
particles of sizeb moving on a segment of lengthL. They
are submitted to a ‘‘sawtooth’’ periodic potentialV(x,t),
which is periodically turned ‘‘on’’@V5Von(x)# for a time
t on and then ‘‘off’’ for a timetoff @V5Voff50# ~see Fig. 1!.
Units are chosen so that the potential spatial periodl is 1, as
well as the friction coefficient of the particles. The asymme-
try of the potential is characterized by the lengtha of its
steepest slope.

If xj denotes the position of the~center of! particle j , the
evolution of the system is then described by the Langevin
equations:

ẋ j52]xV~xj ,t !1j j~ t !, j51, . . . ,N ~1!

which are coupled by the constraint that neighbor particles
are not allowed to overlap: (xj2xj21).b. j j (t) is a Gauss-
ian white noise of autocorrelation function̂j j (t)j i(t8)&
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FIG. 1. Schematic picture of the system showing two particles
of sizeb submitted periodically to the sawtooth periodic potential
Von(x) for a timeton, and then to the flat potentialVoff for a time
toff . The sawtooth potential has a periodl51, sum of a short size
l15a and a long onel2512a. The corresponding energy barrier
is Q.
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52kTd j ,id(t2t8). We consider 0<b,1 as a system of
particles of sizek1b (k integer! can readily be mapped back
to the casek50 ~with the changeL→L2Nk).

Before going further let us briefly comment on a simple
way to describe the diffusive ‘‘off’’ stage in a general case
~see Fig. 2!. The system can be ‘‘compressed’’ to a set of
N pointlikeparticles in a system of sizeL2Nb, keeping the
intervals between particles unchanged. Since these point
particles are identical, whether or not they are allowed to
cross does not affect the evolution of the system: when two
pointlike particles meet we can either let them cross and
swap ~rename! them afterwards, or forbid crossing, the
choice does not affect their final position. This means that
the particles can be handled asnoninteractingones as long
as they are reordered at the end of the ‘‘off’’ stage@16#.
Inverting the ‘‘compression’’ procedure leads back to the
original system.

Let us now investigate how the average velocityv of the
particles depend on their sizeb and density%5bN/L, in the
limit of large systems (N and L go to infinity while % re-
mains finite!. To getanalytical solutions we focus on spe-
cific regimes, as was done for the simpler, one particle limit
(%→0) @1#. First the pinning potentialVon is taken strong
enough so that during the timeton the particles drift quickly
to the positions corresponding to the nearest local energy
minimum of the system, where they get trapped. This deep
potential valley limit (Q@kT) furthermore suits fast separa-
tion purposes. Second, most of our results will be obtained in
the limit wheretoff is long enough for the particles to forget
~modulo the period! their initial position on the sawtooth
during an ‘‘off’’ period. The average displacement over a
cycle is then that of initially randomly distributed particles
during a single ‘‘on’’ phase.

In the low-density limit, a particle with random initial
position in the @2l2 ,l1# period @averagex5 1

2(l22l1)#
ends atx50 after an ‘‘off’’ phase. The average progression
per cycle is thuŝ d&5 1

2(l22l1)51/22a @1#. Let us now
turn to the other extreme: an almost packed system%'1. As
in previous studies of collective effects@14,15#, thecommen-

suration of the particle system to the potential period will
play a crucial role.

To see this, consider the limit case%51 (L/N5b),
where the system is equivalent to a single particle of size
L, the position of which is measured byx1 for example.
Take now the limit of a very large system:N→`. In the
incommensurate case (b irrational!, the particles are then
uniformly distributed in the periods whatever the value of
x1 , so that the whole system feels a flat potential whether the
sawtooth potential is ‘‘on’’ or ‘‘off’’: the average velocity of
the particles is zero. This is to be contrasted to the case of
Ref. @15# where, as particles switched between ‘‘on’’ and
‘‘off’’ independently, motion could be obtained in the in-
commensurate situation. We now turn to the much richer
commensurate case:b5n/m in irreducible form. Simple al-
gebra shows that the effective potential seen by the equiva-
lentL-size particle during ‘‘on’’ periods is a sawtooth poten-
tial of period l851/m with two linear pieces of lengths
l185$ma%/m and l285$m(12a)%/m @14# ~the notation$ %
means the fractional part!. The barrier height isNQ8, where

Q85Q
$ma%$m~12a!%

mam~12a!
. ~2!

The effective temperature is also modified:T85T/N ~dif-
fusion is slower!, so thatNQ8@kT8. Applying the single
particle limit to the equivalent particle, we get its average
displacement per cycle~which is that of every real particle!:

^d&5
1

2
~l282l18!5

1

2m
~122$ma%!. ~3!

A formal problem with the above analysis is that the dif-
fusion coefficient of the equivalent particle iskT/N so that
randomization in the ‘‘off’’ phase cannot be achieved in a
finite time toff ~in the limit N→`, %51). Consider instead
the commensurate case with a density%512«, 0,«!1,
and take first the limitN→`. What are the differences with
the%51 case? At the end of an ‘‘on’’ pinning stage, there
are now a few very distant empty spaces at the top of some
potential barriers, the sizes of which are usually not greater
thanb, that separate groups of.1/« ‘‘touching’’ particles.
This gives the initial conditions for the following diffusing
stage: in the ‘‘compressed’’ picture~Fig. 2!, each group con-
sists of many pointlike particles located at the same position,
separated by distances of orderb. So if the ‘‘off’’ time al-
lows a free particle to diffuse on distances of orderb, the
particles will be randomly distributed~typical separation
.«b). Upon switching the sawtooth potential ‘‘on,’’ to ze-
roth order in« the average displacement is^d& as given by
Eq. ~3!. Thus, the average velocity tends towards
.^d&/(ton1toff) as« goes to zero,toff being kept constant
but large enough to allow free diffusion over distances larger
than b: toff.b2/(kT) in our units. A crucial point of this
argument is thatN should be larger than 1/«, indicating that
N→`, %→1 is a singular limit@16#.

This leads to a quite strange behavior for the high-density
(N→`, %512«) drift as a function of the particles size as
illustrated by Fig. 3~similarly as in Ref.@14#!. The limit
average displacement per on-off cycle^d& is an erratic, dis-
continuous function with sharp peaks@given by Eq.~3!# for

FIG. 2. During the motion of the particles in the flat potential
Voff , the real system can be reduced to a system of sizeL2Nb with
N noninteracting pointlike particles. The intervals between the par-
ticles are kept constant when switching from one system to the
other.
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rational values ofb, and zero otherwise. Both positive and
negative peaks are present, in a pattern that depends on the
value of the asymmetry parametera.

Remember that at zero particle density, the average dis-
placement per cycle is positive~if a,0.5), and independent
of the size of the particles. Increasing the density from 0 to 1,
it evolves to the discontinuous function ofb shown in Fig. 3.
The question is how this occurs. When the density is still less
than one the function̂d(b)& has to be continuous, due to the
smoothing effect of the finite temperature. But we will now
show that increasing the density from 0 to 1 while keeping
the particle sizeb fixed, the velocity can vary nonmonotoni-
cally and can even change sign several times, along a route
that will be sensitive to the actual value ofb.

Let us start with a simple pedagogical example:b51/3
anda50.52b/4. For very small particle densities, a particle
is usually alone in some potential period or valley. Its aver-
age displacement per on-off cycle is aboutb/4, as it is the
distance between its eventual position~the bottom of the
valley! and its average starting position~the middle of the
valley!. At larger densities, when on average two particles
fall into a valley, they will end in the configuration of mini-
mal potential energy: the two particles touch each other, with
the center of the right particle in the bottom of the valley.
Thus, the center of mass of the two particles isb/4 far from
the middle of the valley to the left. Therefore^d&, the aver-
age drift during the ‘‘on’’ stage, is now about2b/4, a
‘‘negative’’ value. At even higher densities, with about three
particles per valley, the average displacement will be about
b/4 again.

Analytical calculations are actually possible forb51/m
with m52,3, . . . , as thevalleys are then ‘‘independent’’:

when the potential is switched ‘‘on,’’ the particles remain in
their starting valley, and the minimal energy configuration in
each valley is independent of what happens in the neighbor-
ing ones. Always assuming that the particles are randomized
before each ‘‘on’’ period, one can calculate the probabilities
that 0,1,. . . ,m particles will start in the same valley~the

FIG. 4. The plot of̂ d&1a as a function of the density% for five
different values ofb, valid if a lies in the appropriate interval,
which is respectively@0,1/2#, @1/3,1/2#, @1/3,1/2#, @2/5,1/2#, and
@2/5,1/2# in decreasing order ofb.

FIG. 5. The plots ~a! and ~b! show respectively^d& and
^d&/toff as a function of the density% in the caseb51/5,
a50.52b/450.45, kT51, for different values oftoff . Supposing
thatQ is largeton can be chosen small enough (ton!toff) so that
^d&/toff is a good approximation of the velocity
v5^d&/(ton1toff).

FIG. 3. High-density limit for the average particle displacement
per on-off cyclê d& as a function of the particles sizeb, for differ-
ent values of the asymmetry parametera.
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intervals between particles follow a Poisson distribution!. By
determining the corresponding minimal energy configura-
tions at the end of the ‘‘on’’ stage,^d& can then be computed
explicitly. This straightforward procedure becomes tedious
for largem and leads to long formulas. Curves are plotted in
Fig. 4, and we only give the simplest formula:

^d&5
1

4
1
1

4 S 1% 21D F12expS 2
%

12% D G2a ~4!

for b51/2 and 0<a,0.5. It is actually easy to see that for
any rational value of b (b5n/m), the quantity
^d(%,a)&1a does not depend ona within intervals where
the minimal energy configurations are the same but for a
shift of 2a. Therefore, in Fig. 4, we have plotted^d&1a as
a function of%.

The figure shows that the average displacement~or veloc-
ity! of the particles is a nonmonotonous function of the den-
sity. For well chosen values ofa ~e.g., a'0.52b/4) the
direction of motion can even change several times. The
curves obtained are consistent with both the low-density re-
sult ^d&1a51/2 and with our high-density (%→1) estimate
as quantified by Eq.~3!.

Eventually, to investigate the range of validity of our ana-
lytical results, we performed numerical simulations using the
compression picture, and present here~Fig. 5! the case
b51/5, a50.52b/450.45, kT51, for different values of
toff . For large values oftoff ~e.g.,toff50.3), the simulation
result is indistinguishable from our analytic predictions.
Analysis also shows that the time for the randomization in

the ‘‘off’’ state is larger at low density, in agreement with
our estimate that it should scale asl2 at low density and
rather asb2 at high density@16#. More importantly, Fig. 5
shows that the features obtained in this paper survive the
relaxation of the ‘‘randomization’’ hypothesis. It also proves
that the high density velocitiesv5^d&/(ton1toff) can be
larger than the optimal low density ones: particles in the
‘‘off’’ state need not diffuse on a distancea but only onb,
which allows us to reduce the cycle time.

In conclusion, we have analyzed the main features of the
collective directed motion of finite size, overdamped Brown-
ian particles in a one-dimensional, spatially asymmetric,
‘‘flashing’’ periodic potential. Through analytical arguments
we have calculated the average particle velocity in certain
limits, exhibiting a few striking points: its direction can al-
ternate upon increase of the particle density, and its value is
very sensitive to the particle size at high density. The one-
dimensionality of the problem certainly favors the occur-
rence of such salient features. We, however, hope that this
study will encourage the theoretical and experimental analy-
sis of the influence ofcollective effectsin real 1D, 2D, or 3D
propelling devices@11–13#: a strong sensitivity to properties
of particles and a highly nonlinear behavior are features that
could be taken advantage of for separation purposes.
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