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In this paper we give an overview of thecooperative effectsin fluctuation driven transport arising
from the interaction of a large number of particles.~i! First, we study a model with finite-sized,
overdamped Brownian particles interacting via hard-core repulsion. Computer simulations and
theoretical calculations reveal a number of novel cooperative transport phenomena in this system,
including thereversal of direction of the net currentas the particle density is increased, and a very
strong andcomplex dependence of the average velocityon both the size and the average distance of
the particles.~ii ! Next, we consider the cooperation of a collection of motors rigidly attached to a
backbone. This system possessesdynamical phase transitionallowing spontaneous directed motion
even if the system is spatially symmetric.~iii ! Finally, we report on an experimental investigation
exploring the horizontal transport of granular particles in a vertically vibrated system whose base
has a sawtooth-shaped profile. The resulting material flow exhibits complex collective behavior,
both as a function of the number of layers of particles and the driving frequency; in particular, under
certain conditions, increasing the layer thickness leads to areversal of the current, while theonset
of transport as a function of frequency occurs gradually in a manner reminiscent of aphase
transition. © 1998 American Institute of Physics.@S1054-1500~98!02103-X#
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Recently there has been considerable interest in the vari
ous transport processes, often referred to as fluctuation
driven transport, that take place in systems with no mac-
roscopic driving forces. In the corresponding models, the
transport of particles is sustained by nonequilibrium
fluctuations in a periodic, locally asymmetric, but macro-
scopically flat structure. Motivated by numerous biologi-
cal and physical systems, special attention has been pai
to the cooperative effects arising from the interaction of a
large number of such particles moving along the same
structure. Here we outline some of the new collective phe
nomena occurring in different models and present the
results of an experiment with granular materials moving
in a vertically vibrating system with a sawtooth-shaped
base.

I. INTRODUCTION

The most common and best known transport phenom
occur in systems in which there exist macroscopic driv
forces~typically due to external fields or concentration gr
dients!. However, recent theoretical studies have shown
far from equilibrium processes in structures possessing
torial symmetry can bias thermal noise and induce mac
scopic motion on the basis of purely microscopic effects.1–13

This newly suggested mechanism is expected to be esse
for the operation of molecular combustion motors that
responsible for many kinds of biological motion such as c
lular transport or muscle contraction.14 A transport mecha-
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6571054-1500/98/8(3)/657/8/$15.00
na
g

at
c-
-

tial
e
l-

nism of this kind has also been experimentally demonstra
in simple physical systems15,16 and can lead to new techno
logical ideas such as designing nanoscale devices, const
ing a novel type of particle separator, or treating so
surfaces.17

A. Motion of a single particle

In the theoretical models, loosely termed ‘‘thermal ratc
ets,’’ Brownian particles are moving in an overdamped e
vironment along one-dimensional asymmetric periodic p
tentials due to the effect of nonequilibrium fluctuations. F
simplicity and illustration purposes let us choose the pot
tial to be sawtooth shaped@Fig. 1~a!#, and consider two basic
types of fluctuations: the fluctuating potential@Fig. 1~b!# and
the fluctuating force@Fig. 1~c!#.

In the case of the fluctuating potential the sawtooth p
tential is switched on and off repeatedly with appropria
switching rates. Figure 1~b! illustrates the time evolution o
the probability distribution of the position of the partic
starting from one of the potential valleys. Due to a combin
tion of diffusion during the ‘‘off’’ state and directed motion
during the ‘‘on’’ state a net motion to theleft can be ob-
served.

When the effects of a fluctuating forceF(t) are consid-
ered,F(t) is assumed to alternate between1F and2F with
an appropriate characteristic frequency and with zero t
average@Fig. 1~c!#. When the force points to the righ
@F(t)51F#, the probability of jumping to the right domi
nates the jumping events with the coefficient exp„2(DE
2Fl1)/kBT…. When the force is2F, the probability of
jumping to the left dominates, but with the coefficie
© 1998 American Institute of Physics
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exp„2(DE2Fl2)/kBT…. And sincel1.l2 , this fluctuating
force results in a net motion to theright.

B. Transport of many interacting particles

In the actual realizations of the ratchet mechanism ty
cally there are many particles moving at the same time. S
systems include examples ranging from biology to phys
In the case of muscle contraction the motion is due to
simultaneous action of myosin molecules. In the dielect
phoretic experiments on the directed migration of sm
polystyrene beads the motion of many colloidal particles w
studied.15 It is a natural question to investigate whether t
interaction among many particles leads to collective p
nomena specific to the ratcheting mechanism.

One of the most interesting aspects of many particle s
tems is that they exhibit a complex cooperative behav
during phase transition. This remarkable feature of equi
rium systems has been studied in great detail for the
couple of decades leading to a deeper understanding of
cesses which may take place in an assembly of interac
particles. Concepts like scaling, universality, and renorm
ization have resulted in a systematic picture of a wide ra
of systems in physics.18,19

Remarkably, far-from-equilibrium systems of many pa
ticles have been shown to exhibit collective behavior as w
In particular, the existence of phase transition type beha
has been demonstrated in several investigations of gro
phenomena.20–22 These and further analogies with the ba
features of equilibrium systems have represented a par
larly important contribution to the understanding of the co
plex behavior of nonequilibrium processes.

Here we review recent results on the simultaneous m
tion of many particles moving in asymmetric structures
the presence of nonequilibrium fluctuations. In the rela
theoretical, numerical, and experimental studies novel ki
of transitions could be observed indicating that many int
acting particles exhibit collective behavior in ratchet syste
as well, although the nature of this behavior can be v
specific and sometimes surprising.

II. COLLECTIVE BEHAVIOR OF FINITE-SIZED
PARTICLES

In this section we discuss the collective motion of finit
sized Brownian particles in a one-dimensional sawtoo

FIG. 1. The motion of a Brownian particle~a! in a sawtooth-shaped poten
tial due to the effect of~b! fluctuating potential and~c! fluctuating force.
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shaped potential for both fluctuating force23 and fluctuating
barrier.24 The interaction between the particles has been s
posed to be simple hard-core repulsion.

A. Fluctuating driving force

For fluctuating force the motion of each particle is d
scribed by the Langevin equation:

ẋ j52]xV~xj !1F j~ t !1j j~ t !, j 51,...,N, ~1!

whereN is the number of particles,xj denotes the position o
the center of mass of thej th particle,V(x) is a sawtooth-
shaped periodic potential,F j (t) is the fluctuating driving
force with zero time average, andj j (t) is Gaussian white
noise with the autocorrelation function̂ j j (t)j i(t8)&
52kBTd j ,id(t2t8). These equations are coupled by t
hard-core repulsive interaction, i.e., by the constraint t
neighboring particles are not allowed to overlap during th
motion. All particles have the same sizeb, while the period
of the potential isl51, as shown in Fig. 2. The size of th
system or in other words the number of the periods isL ~N
andL go to infinity, whileL/N remains finite!.

Normally, one single particle moves in the direction co
responding to the smaller uphill slope of the potential. Ho
ever, there is a range of the parameters of the periodic d
ing force for which the particle migrates into the oppos
direction.6–9 In this regime computer simulations revealed23

that gradual addition of particlesinto the systemresults in
the change of their average velocityback to the ‘‘normal’’
direction. We have tested this result for several differe
cases~including driving forces periodic in time7 and distrib-
uted according to ‘‘kangaroo’’ statistics6! and we have found
that this change of the current’s direction is a universal pr
erty of the collective motion in this model. Figure 3 shows
simple example, where the driving forces areF j (t)
5A sin(vjt) and thev j values are chosen randomly around
fixed valuev with a dispersion of several percentage ofv ~to
avoid synchronization!. The plot shows the average veloci
as a function ofv, for various values of the particle densit
defined asr[bN/L (0,r,1). In the inset we have plotted
the fundamental diagram: the particle currentJ[vN/L as a
function of the particle density forv5175.

Another interesting feature can be observed bychanging
the sizeof the particles while keeping the average distan

FIG. 2. Schematic picture of the system we consider showing two parti
with size b subject to the sawtooth-shaped periodic potentialV(x). The
period of the potential isl51, where the lengths of the slopes arel15a
and l2512a. The potential difference between the top and the bott
is Q.
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between neighboring particles (s5L/N2b) fixed: The aver-
age velocity shows a complex nonmonotonic dependenc
the size of the particles, especially at smalls ~or high particle
density!. The smaller the average distances, the more and
the bigger the peaks appear around the rational valuesb.
Investigating the origin of this strange behavior we exam
the simplest case when the driving force isstationary,
F j (t)5F, and smaller than the uphill gradient of the pote
tial.

Let us consider the case when the size of the particle
somewhatless than 1 and there are two particles in th
neighboring valleys of the potential. Then the second part
is not able to jump further ahead until the first one jum
away. So the first one hinders the second one. Thus the
erage velocity is smaller than the velocity of a single partic
Figure 4~a! shows this situation for 15 particles. Avacancy
typecurrent can be observed as a consequence of the tr
jams arising from the hindering of particles. This pheno
enon is also related to jams common in one-dimensio
driven diffusive systems and traffic models.25 If the size of
the particles is a bitlarger than 1 and there are also tw
particles in the neighboring valleys, both of them cannot
in their minimum energy position at the same time, therefo
the first one has a larger chance to jump further. In this c
the second one indirectly ‘‘pushes’’ the first one, howev
the first one also hinders the second one. But in spite of
hindering effect, the average velocity can even be larger t
the velocity of a single particle. This situation is shown
Fig. 4~b! for 12 particles. There are no jams and the dens
waves indicate that the particles help each other to ju
through to the next valley. At high particle densities simi
arguments hold for the explanation of the sensitive dep
dence of the average velocity onb around other rational val
ues, too. In case of slowly alternating external forces th
effects~hindering and pushing! are expected to influence th
net transport.

FIG. 3. The plot of the average velocityv as a function of the averag
frequencyv of the sinusoidal driving forces for three different values of t
particle densityr[bN/L. The inset demonstrates the reversal of the part
current J[vN/L as a function of the particle densityr, for v5175. ~Q
54, a50.8, b50.5, T51, and the amplitude of the driving forcesA532.!
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B. Flashing potential

Next we study the motion of particles with hard-co
repulsion, in an asymmetric potential that is switched on a
off at the same time for all the particles.24 This natural ex-
tension of the on/off model to many particles also leads t
rich phenomenology.

As before we considerN overdamped Brownian par
ticles of sizeb moving on a segment of lengthL. They are
submitted to a sawtooth periodic potentialV(x,t), which is
periodically turned ‘‘on’’ for a timeton and then ‘‘off’’ for a
time toff . Units are chosen so that again the potential spa
period l is 1, as well as the friction coefficient of the pa
ticles. The asymmetry of the potential is characterized by
lengthl15a.

If xj denotes the position of the~center of! particlej, the
evolution of the system is then described by the Lange
equations:

ẋ j52]xV~xj ,t !1j j~ t !, j 51,...,N, ~2!

which are coupled by the constraint that neighbor partic
are not allowed to overlap: (xj2xj 21).b.

Let us investigate how the average velocityv of the
particles depend on their sizeb and densityr[bN/L, in the
limit of large systems~N andL go to infinity whiler remains
finite!. To get analytical solutions we focus on specific r

FIG. 4. Motion of the particles in the space–time domain. The time
creases from left to right and the particles are moving downwards unde
influence of the stationary driving forceF. Horizontal lines represent the
bottom of the potential valleys, and the wide slanted line represents
average motion of a single noninteracting particle.~a! Shows 15 particles
with size b50.833. A vacancy type current can be observed, as a co
quence of the hindering effect of particles. The average velocityv is smaller
than the average velocity of one single particle.~b! Shows 12 particles with
size b51.166. There are no jams, and the density waves show that
particles assist each other in jumping over to the next valley.v is larger than
the velocity of a single particle. The average distance between particle
s50.5 in both cases.
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gimes: First the pinning potentialVon is taken strong enough
so that during the timeton the particles drift quickly to the
positions corresponding to the nearest local energy minim
of the system, where they get trapped. This deep pote
valley limit (Q@kBT) furthermore suits fast separation pu
poses. Second,toff is long enough for the particles to forge
~modulo the period! their initial position on the sawtooth
during an ‘‘off’’ period. The average displacement over
cycle is then that of initially randomly distributed particle
during a single ‘‘on’’ phase.

In the low-density limit, a particle with random initia
position in the@2l2 ,l1# period ends atx50 after an ‘‘off’’
phase. The average progression per cycle is thus^d&5 1

2(l2

2l1)51/22a. Let us now turn to the other extreme: a
almost packed systemr'1.

Consider the limit caser51, where the system is
equivalent to a single particle of sizeL, the position of which
is measured byx1 , for example. In the incommensurate ca
~b irrational!, the particles are uniformly distributed in th
periods whatever the value ofx1 , so the whole system feel
a flat potential whether the sawtooth potential is ‘‘on’’
‘‘off.’’ Therefore the average velocity of the particles is zer
We now turn to the much richer commensurate caseb
5n/m in irreducible form. The effective potential seen b
the equivalentL-size particle during ‘‘on’’ periods is a saw
tooth potential of periodl851/m with two linear pieces of
lengths l185$ma%/m and l285$m(12a)%/m ~the notation
$¯% means the fractional part!, and the barrier height is
NQ8, where

Q85Q
$ma%$m~12a!%

ma•m~12a!
. ~3!

Applying the single particle limit to the equivalent particl
we get its average displacement per cycle~which is that of
every real particle!:

^d&5
1

2
~l282l18!5

1

2m
~122$ma%!. ~4!

It can be proven24 that this result holds in that limit when
N→` is taken first and thenr→1.

This leads to a quite strange behavior for the hig
density~N→`, r512e! drift as a function of the particles
size as illustrated by Fig. 5. The limit average displacem
per on–off cycle^d& is an erratic, discontinuous functio
with sharp peaks@given by Eq.~4!# for rational values ofb,
and zero otherwise. Both positive and negative peaks
present, in a pattern that depends on the value of the as
metry parametera.

Remember that at zero particle density, the average
placement per cycle is positive~if a,0.5!, and independen
of the size of the particles. Increasing the density from 0 to
it evolves to the discontinuous function shown in Fig. 5. T
question is how this occurs. When the density is still le
than 1 the function̂ d(b)& has to be continuous, due to th
smoothing effect of the finite temperature. It can be show24

that increasing the density from 0 to 1 while keeping t
m
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particle sizeb fixed, the velocity can vary nonmonotonicall
and can even change sign several times, along a route
will be sensitive to the actual value ofb.

III. COLLECTIVE BEHAVIOR OF RIGIDLY ATTACHED
PARTICLES

In several biological studies large groups of motor p
teins are working together to transport relatively big objec
Jülicher and Prost26 introduced a model to describe the b
havior of these systems. In this model a large number
particles is subject to a periodic, asymmetric potential, tha
turned ‘‘on’’ and ‘‘off’’ independently for each particle, and
the particles are attached to a rigid backbone that keeps
distance between them fixed~Fig. 6!.

FIG. 5. High-density limit for the average particle displacement per on–
cycle ^d& as a function of the particles sizeb, for different values of the
asymmetry parametera.

FIG. 6. Schematic representation of the two-state model with many part
attached to a rigid backbone.
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In the following, we focus on the case where either t
particles are randomly attached to the backbone or the s
ing between them is constant but incommensurate with
period of the potential. In both cases the particles are u
formly distributed in the periods, and can be characterized
the probability distribution Pon(x,t) and Poff(x,t)51
2Pon(x,t), where 0<x,1 denotes the particle positio
with respect to the potential period and ‘‘on’’ and ‘‘off’
refer to the state of the potential.

The equations of motion for this system are26

] tPon1v]xPon52von~x!Pon1voff~x!Poff ,
~5!

] tPoff1v]xPoff51von~x!Pon2voff~x!Poff ,

wherevon(x) andvoff(x) denote the transition rates betwe
the two states of the potential, and the velocity of the ba
bone,v, is determined byv5 f ext1 f ~units are chosen agai
so that the friction coefficient is 1!. The external forcef ext

and the average force

f 52E
0

1

dx„Pon]xVon~x!1Poff]xVoff~x!… ~6!

exerted by the potentials~which should be zero for the fla
potential! are normalized per particle.

In the steady state, using the relationPoff512Pon,
these equations reduce to

v]xPon52„von~x!1voff~x!…Pon1voff~x!, ~7!

f ext5v1E
0

1

dxPon]x„Von~x!2Voff~x!…. ~8!

These equations allow the determination of the external fo
f ext(v) that corresponds to a constant velocityv. Equation
~8! can be solved either analytically for some potent
shapes or in a power expansion as a function of the velo
v.26

Let us expressvon(x) as voff(x)e„Von(x)2Voff(x)…/(kBT)

1VQ(x), where now the ‘‘amplitude’’V measures the dis
tance from equilibrium~for V50 detailed balance holds!. In
order to discuss cooperative effects, we consider a sys
with no external force and with symmetric periodic pote
tials. Let the perturbationQ(x) be non-negative, also sym
metric, and localized in the vicinity of the potential min
mum ~i.e., it differs from zero only in that region!. It can be
shown26 that if V is smaller than a critical valueVc , the
velocity of the backbone is zero, but forV.Vc the solution
bifurcates to two stable solutionsv56v(V), while the v
50 solution becomes unstable. Therefore acontinuous onse
of motionoccurs atV5Vc via spontaneous symmetry brea
ing.

This spontaneous symmetry breaking can be unders
qualitatively as follows. Forv50 the localized excitation
VQ(x) leads to a depletion ofPon(x) near the potentia
minimum. SinceQ(x) and the potentials are spatially sym
metric, the forcef vanishes. If the system is now perturbed
such a way that the backbone moves to the right with a sm
velocity v, the depletion ofPon(x) is being transported to th
right. Now the population along the positive potential slo
is depleted, while along the negative slope it has gained
e
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ticles. As a result, the average forcef pulls the backbone to
the right and increases the effect of the initial perturbatio

If the potential is asymmetric the spontaneous symme
breaking transition is no longer possible, since the velocit
nonzero at zero external force for any nonvanishing exc
tion V. However, ifV.Vc two stable solutions for the ve
locity can still exist, and by changing the external forcef ext

the transition between the two solutions is discontinuous
exhibits hysteresis.

Another version of this model, where the backbone
elastically coupled to its environment, leads to the onse
spontaneous oscillation instead of unidirectional motion.27

The condition of the backbone’s rigidity can be relax
by assuming that the particles are attached via springs
such models weakening the interaction between the parti
allows us to study the crossover from single to collect
motion.28

IV. HORIZONTAL TRANSPORT IN VERTICALLY
VIBRATED GRANULAR LAYERS

These studies of the collective motion of particles in
asymmetric, periodic structure and the interesting new
sults for flows in excited granular materials29–34motivated us
to carry out a series of experiments that explore the man
in which granular particles arehorizontally transported by
means ofvertical vibration.

The investigation of a transport mechanism for granu
materials analogous to that of ratchets is an appealing i
both conceptually and practically. By carrying out expe
ments on granular materials vibrated vertically by a ba
with a sawtooth profile, it is possible to achieve a fascinat
combination of two topics of considerable current intere
ratchets and granular flows. A number of recent papers h
focused on vibration-driven granular flow, and the details
the resulting convection patterns have been examined,
by direct observation30,31,33,34 and by magnetic resonanc
imaging.32,35 Granular convection has also been simula
numerically by several groups; the study most closely rela
to the present work deals with the horizontal transport t
occurs when the base is forced to vibrate in an asymme
manner.36

Here we describe an investigation of the horizontal flo
of granular material confined between two upright concen
cylinders undergoing vertical vibration. In order to indu
transport, the height of the annular base between the cy
ders has a periodic, piecewise-linear profile~in other words,
it is sawtooth-like!. We observe novel collective behavior i
the resulting material flow, both as functions of the numb
of particle layers and the driving frequency. The most co
spicuous features, for the experimental parameters used
are that increasing the layer thickness results in areversalof
the current, and that the onset of transport as a function
frequency takes place in a manner analogous to a phase
sition with an exponentb.1.8.

A. Experiments

Figure 7 shows a schematic view of the experimen
apparatus. To achieve a quasi-two-dimensional system w
out boundaries in the direction of the expected flow t
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granular material is placed between two concentric gl
cylinders.33 The mean diameter of the cylinders is 10 c
while the gap between the cylinders is either 3 or 5 mm
ring filling the gap between the cylinders, with a sawtoo
profile on its upper surface, is mounted on the base of
container; the ring is made of either PVC~‘‘soft’’ ! or dana-
mid ~‘‘hard’’ !, and different sawtooth shapes are used. T
entire assembly is vertically vibrated with a displacem
that depends sinusoidally on time.

The apparatus has a strong steel framework and is fi
upon a heavy concrete base in order to reduce uninten
vibrations. However, these precautions do not affect the
tational vibrations of the cylinders around their axis, whi
can lead to dramatic experimental artifacts. They have b
eliminated by a horizontal steel rod fastened to the cylind
The two ends of the rod are closely fitted to vertical pla
allowing vertical but suppressing horizontal motion. The v
tical vibration of the system is provided by an electromo
placed below the cylinders. The rotation of the motor is co
verted into vibration by an excenter, and its frequency
controlled by the following method. A disk with 20 hole
around its perimeter is fixed to the rotating shaft of the mo
and the light passing through the holes is detected by a p
tocell. The sign of the photocell is negatively fed back to t
motor resulting in a stable frequency. In order to make
load of the motor uniform a counterweight is also fixed to t
rotating shaft.

Our arrangement is naturally different from the real tw
dimensional case because of the existence of the sidew
They certainly affect the motion of the particles by increa
ing dissipation and by inducing rotation of the particles. W
believe, however, that these effects only slightly modify a
do not change qualitatively our results.

Two types of granular media are used in the expe
ments, monodisperse glass balls and quasiellipsoidal pla
beads~see the inset of Fig. 8!. The glass balls are nearl
spherical with a diameter of 3.3 mm62%. The plastic beads
have a much greater size dispersion: two of the axes
approximately equal in length and lie in the range 2.4–
mm, while the third axis is 1.2–1.7 mm. As shown in t
inset of Fig. 8, the size of each sawtooth is similar to that
the particles. Two sawtooth shapes are considered; in

FIG. 7. Diagram of the experimental apparatus. The granular materi
placed between the two glass cylinders and the whole assembly is subj
to sinusoidal vertical vibration.
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case the ratio of the horizontal projection of the tooth ed
is 1:2 ~‘‘weak’’ asymmetry!, in the other the left-hand edg
is vertical ~‘‘strong’’ asymmetry!.

Provided the frequency is sufficiently large, the vertic
vibration causes horizontal flow of the entire granular lay
This bulk motion is reproducible over repeated experimen
The average flow velocity is determined by tracking ind
vidual tracer particles visible through the transparent cy
der walls. In order to average out fluctuations, the partic
are allowed to travel large distances; depending on the
of the fluctuations this distance is between 1.5 and 6
~equal to 5–20 times the circumference of the system!. Each
point shown in the graphs is an average over 3–6 tra
particles.

The typical trajectory of a single tracer particle is show
in Fig. 9. These data points were measured by using
glass balls and a strongly asymmetric sawtooth-shaped P
base, and applying a vibration with frequencyf 525 Hz and
amplitudeA52 mm. In this case the motion of the trac
particle is nearly uniform, but some variation of velocity ca
be clearly seen. The two breaks in the curve correspon
occasional big jumps of the particle in the negative directi
Decreasing the number of particles these backward jum
become more frequent.

The tracer particles have to be chosen carefully to av
segregation effects. Our tracers were identical to the o
particles except for their colors. The plastic beads are av
able in many colors, but in the case of glass balls we ha
dye them. In most cases we used alcohol-based pens
coloring, so that the surface properties of the balls chan
as little as possible. We also used colored lacquer too,
because it produces a thicker layer on the surface we alw
tested the results with particles colored by alcohol-ba
pens.

is
ted
FIG. 8. Horizontal velocity as a function of the number of particles. T
four curves represent measurements for different sawtooth shapes an
terials and for different particle types:~1! strongly asymmetric sawtooth
shaped PVC and plastic beads;~2! strongly asymmetric sawtooth-shape
PVC and glass balls;~3! weakly asymmetric sawtooth-shaped PVC a
plastic beads;~4! weakly asymmetric sawtooth-shaped danamid and pla
beads. The amplitude and frequency areA52 mm, f 525 Hz.
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B. Results

Figure 8 shows the horizontal flow velocity as a functi
of the number of particles for four different versions of t
system. The actual sawtooth and particle shapes are show
the inset: curves 1 and 2 correspond to strongly asymme
sawtooth shapes and different particle types, while curve
and 4 involve weak asymmetry and different base materi
Positive velocities are defined to be in the direction
which the left-hand edge of the sawtooth has the stee
slope. The vibration amplitude and frequency areA52 mm
and f 525 Hz; the dimensionless accelerationG
5(2p f )2A/g is an important quantity for vibrated granula
systems, so that hereG55.

The most striking difference between the curves is d
to the different sawtooth shapes. While the velocities
curves 1 and 2 are always positive, curves 3 and 4 be
negative and only later become positive, in other words, e

FIG. 10. Horizontal velocityv as a function of the dimensionless accele
tion G at constant amplitude (A52 mm). The experiment is for a strongl
asymmetric sawtooth-shaped PVC and 200 glass balls. The inset sho
log–log plot of v close to the transition as a function ofG2Gc , where
Gc51.75.

FIG. 9. Typical trajectory of a tracer particle: the advanced distance
function of time. The continuous line is a linear fit. Strongly asymme
sawtooth-shaped PVC was used with 200 glass balls. The amplitude
frequency wereA52 mm, f 525 Hz.
in
ic
3

s.
r
er

e
n
in
n

the flow direction depends on the layer thickness. Additio
ally, the well-defined maxima in the first two curves are n
present in curves 3 and 4. Altering the particle shape redu
the velocity and shifts the location of the maximum, but t
shape of the curve remains unchanged. Likewise, chan
the elasticity of the base does not alter the curve qua
tively. The different curves do nevertheless have certain f
tures in common. For thin layers~corresponding to a smal
number of particles! they all begin with positive slope. Fur
thermore, for the thicker layers~larger numbers of particles!,
the velocity is always positive.

Figure 10 shows theG dependence of the flow velocit
for a system of 200 balls~amounting to four layers! for con-
stantA; this graph corresponds to the experimental syst
shown in curve 2 of Fig. 8~glass balls and strongly asym
metric sawtooth-shaped PVC!. Flow occurs only above a
critical accelerationGc.1.75. Slightly above this critica
value the velocity appears to follow a power law

v~G!}~G2Gc!
1.8, ~9!

suggesting that the onset of flow resembles the kind of ph
transition observed at a hydrodynamic instability such
thermal convection.37
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