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In this paper we give an overview of tle@operative effects fluctuation driven transport arising

from the interaction of a large number of particl€s. First, we study a model with finite-sized,
overdamped Brownian particles interacting via hard-core repulsion. Computer simulations and
theoretical calculations reveal a number of novel cooperative transport phenomena in this system,
including thereversal of direction of the net curreas the particle density is increased, and a very
strong anccomplex dependence of the average velamitypoth the size and the average distance of
the particles(ii) Next, we consider the cooperation of a collection of motors rigidly attached to a
backbone. This system possesgdgsamical phase transitioallowing spontaneous directed motion
even if the system is spatially symmetrigi) Finally, we report on an experimental investigation
exploring the horizontal transport of granular particles in a vertically vibrated system whose base
has a sawtooth-shaped profile. The resulting material flow exhibits complex collective behavior,
both as a function of the number of layers of particles and the driving frequency; in particular, under
certain conditions, increasing the layer thickness leadsraversal of the currentwhile theonset

of transportas a function of frequency occurs gradually in a manner reminiscent fase
transition © 1998 American Institute of Physids$§1054-150(08)02103-X]

Recently there has been considerable interest in the vari- nism of this kind has also been experimentally demonstrated
ous transport processes, often referred to as fluctuation in simple physical systen®!®and can lead to new techno-
driven transport, that take place in systems with no mac- logical ideas such as designing nanoscale devices, construct-
roscopic driving forces. In the corresponding models, the ing a novel type of particle separator, or treating solid
transport of particles is sustained by nonequilibrium  gyrfaced’

fluctuations in a periodic, locally asymmetric, but macro-
scopically flat structure. Motivated by numerous biologi-
cal and physical systems, special attention has been paid In the theoretical models, loosely termed “thermal ratch-
to the cooperative effects arising from the interaction ofa  ets,” Brownian particles are moving in an overdamped en-
large number of such particles moving along the same vironment along one-dimensional asymmetric periodic po-
structure. Here we outline some of the new collective phe-  tentials due to the effect of nonequilibrium fluctuations. For
nomena occurring in different models and present the  simpiicity and illustration purposes let us choose the poten-
results of an experiment with granular materials moving  jg| to be sawtooth shapé#ig. 1(a)], and consider two basic

in a vertically vibrating system with a sawtooth-shaped g of fluctuations: the fluctuating potentigig. 1(b)] and

A. Motion of a single particle

base. the fluctuating forcéFig. 1(c)].
In the case of the fluctuating potential the sawtooth po-
| INTRODUCTION tential is switched on and off repeatedly with appropriate

switching rates. Figure(lb) illustrates the time evolution of

The most common and best known transport phenomen@e probability distribution of the position of the particle
occur in systems in which there exist macroscopic drivingstarting from one of the potential valleys. Due to a combina-
forces(typically due to external fields or concentration gra-tion of diffusion during the “off” state and directed motion
dients. However, recent theoretical studies have shown thaduring the “on” state a net motion to thkeft can be ob-
far from equilibrium processes in structures possessing vecerved.
torial symmetry can bias thermal noise and induce macro- When the effects of a fluctuating for€gt) are consid-
scopic motion on the basis of purely microscopic effécts.  ered,F(t) is assumed to alternate betweelF and— F with
This newly suggested mechanism is expected to be essentigh appropriate characteristic frequency and with zero time
for the operation of molecular combustion motors that areaverage[Fig. 1(c)]. When the force points to the right
responsible for many kinds of biological motion such as cel{F(t) =+ F], the probability of jumping to the right domi-
lular transport or muscle contractidhA transport mecha- nates the jumping events with the coefficient €xpAE
—FX\,)/kgT). When the force is—F, the probability of
dElectronic mail: derenyi@rainbow.uchicago.edu jumping to the left dominates, but with the coefficient
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) ] ) ] FIG. 2. Schematic picture of the system we consider showing two particles
FIG. 1. The motion of a Brownian particle) in a sawtooth-shaped poten- with size b subject to the sawtooth-shaped periodic poteriti@). The
tial due to the effect ofb) fluctuating potential andc) fluctuating force. period of the potential ia. =1, where the lengths of the slopes are=a
and \,=1—a. The potential difference between the top and the bottom
is Q.
exp(— (AE—FA\,)/kgT). And since\ ;>\, this fluctuating

force results in a net motion to thight. ] ) )
shaped potential for both fluctuating foféend fluctuating

barrier?* The interaction between the particles has been sup-
posed to be simple hard-core repulsion.
In the actual realizations of the ratchet mechanism typi-
cally therg are many particles mqving at thg same time. Suc]a_ Fluctuating driving force
systems include examples ranging from biology to physics. _ ) o
In the case of muscle contraction the motion is due to the FOr fluctuating force the m_Ot"_)” of each particle is de-
simultaneous action of myosin molecules. In the dielectroSCribed by the Langevin equation:
phoretic experiments on the directed migration of small XJZ—&XV(XJ)+Fj(t)+§j(t), i=1,..N, (1)

polystyrene beads the motion of many colloidal particles was , . .
studied® It is a natural question to investigate whether thewhereN is the number of particles; denotes the position of

interaction among many particles leads to collective phe:[he center of mass of thggh particle, V(x) is a sawtooth-

nomena specific to the ratcheting mechanism. shaped periodic potentiak(t) is the fluctuating driving

One of the most interesting aspects of many particle sysiorce With zero time average, arg|(t) is Gaussian V‘,’h'te
oise with the autocorrelation function(&;(t)&(t"))

tems is that they exhibit a complex cooperative behaviof! - _
during phase transition. This remarkable feature of equilib-szBTﬁJvia(t_t ) These equations are coupled l_3y the
rium systems has been studied in great detail for the lad}2rd-coré repulsive interaction, i.e., by the constraint that
couple of decades leading to a deeper understanding of pr&-e'@!hbo””g par_t|cles are not allowed _to ove_rlap durlng their
cesses which may take place in an assembly of interactin otion. All P?““,C'es have the same s!bewh|le thg period
particles. Concepts like scaling, universality, and renormal- f the pote_ntlal iS\=1, as shown in Fig. 2. The size c,)f the
ization have resulted in a systematic picture of a wide rangéyStem orin o.th.er wor_ds the numt_)er O,f _the periods (&
of systems in physic¥:1? andL go to infinity, yvh|le L/N. remains f|p|te. o
Remarkably, far-from-equilibrium systems of many par- Normally, one single partple moves in the dlrec.tlon cor-
ticles have been shown to exhibit collective behavior as well€SPoNding to the smaller uphill slope of the potential. How-
In particular, the existence of phase transition type behaviof V" there is a range of the parameters of the periodic driv-

has been demonstrated in several investigations of growtlfd force for which the particle migrates into the opposite
phenomen&®~?? These and further analogies with the basic

B. Transport of many interacting particles

direction®=? In this regime computer simulations revedfed

features of equilibrium systems have represented a particjl@t 9radual addition of particlesnto the systenresults in

larly important contribution to the understanding of the com-;[jhe change of ;‘helr average r:{elocbﬁlckfto the nolrrg_zfafl
plex behavior of nonequilibrium processes. irection. We have tested this result for several different

Here we review recent results on the simultaneous mo(_:ases(includ'ing driving forces peri'od.ic in timfeand distrib-
tion of many particles moving in asymmetric structures inUted according to “kangaroo 'stat.lsu?)'sanc'i we have found
the presence of nonequilibrium fluctuations. In the relatec}hat this change of the current's direction is a universal prop-

theoretical, numerical, and experimental studies novel kindg_rty of the collective motion in this model. Figure 3 shows a

of transitions could be observed indicating that many interSIMPI€ example, where the driving forces afg(t)

acting particles exhibit collective behavior in ratchet systems. ~ Sin(;t) and thew; values are chosen randomly around a

as well, although the nature of this behavior can be verjix€d valuew with a dispersion of several percentagewofto
specific and sometimes surprising avoid synchronization The plot shows the average velocity

as a function ofw, for various values of the particle density
defined ap=bN/L (0<p<1). In the inset we have plotted
the fundamental diagram: the particle currdrtvN/L as a
function of the particle density fow=175.

In this section we discuss the collective motion of finite-  Another interesting feature can be observecthgnging
sized Brownian particles in a one-dimensional sawtoothihe sizeof the particles while keeping the average distance

Il. COLLECTIVE BEHAVIOR OF FINITE-SIZED
PARTICLES
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FIG. 3. The plot of the average velocity as a function of the average
frequencyw of the sinusoidal driving forces for three different values of the
particle densityp=bN/L. The inset demonstrates the reversal of the particle
currentJ=vN/L as a function of the particle densipy, for ®=175. (Q
=4,a=0.8,b=0.5,T=1, and the amplitude of the driving forcés=32)

between nelghborlng pamdes% L/N_b) fixed: The aver- FIG. 4. Motion of the particles in the space—time domain. The time in-

age velocity shows a complex nonmonotonic dependence Qfieases from left to right and the particles are moving downwards under the

the size of the particles, especially at snslbr high particle  influence of the stationary driving forde. Horizontal lines represent the

density). The smaller the average distangethe more and bottom of the potential valleys, and the wide slanted line represents the
. . average motion of a single noninteracting parti¢®. Shows 15 particles

the bigger the peaks appear around the rational valués of with sizeb=0.833. A vacancy type current can be observed, as a conse-

Investigating the origin of this strange behavior we examinjuence of the hindering effect of particles. The average velocisysmaller

the simplest case when the driving force stationary than the average velocity of one single parti¢®.Shows 12 particles with

) — ; ; _size b=1.166. There are no jams, and the density waves show that the
Fl(t) F, and smaller than the uDhI" gradlent of the poten particles assist each other in jumping over to the next valleg.larger than

tial. the velocity of a single particle. The average distance between particles is
Let us consider the case when the size of the particles is=0.5 in both cases.

somewhatless than 1 and there are two particles in the

rle|ghbor|ng va_IIeys of the potential. Th_en the .second partlcl%. Flashing potential
is not able to jump further ahead until the first one jumps
away. So the first one hinders the second one. Thus the av- Next we study the motion of particles with hard-core
erage velocity is smaller than the velocity of a single particle "epulsion, in an asymmetric potential that is switched on and
Figure 4a) shows this situation for 15 particles. viacancy  ©ff at the same time for all the particlé8 This natural ex-
type current can be observed as a consequence of the traﬁ;_gnsion of the on/off model to many particles also leads to a

jams arising from the hindering of particles. This phenom-Tich phenomenology. _
enon is also related to jams common in one-dimensional /S before we consideN overdamped Brownian par-

driven diffusive systems and traffic modéfsif the size of t'cfs of gizeb moving ohn a s.eg-ment of length Thhe_yha_re
the particles is a bitarger than 1 and there are also two submitted to a sawtooth periodic potentiélx,t), which is

particles in the neighboring valleys, both of them cannot b({?erlodlcally tyrned on” for a timero, ar_ld then “off for a
: T . . ime 7, . Units are chosen so that again the potential spatial
in their minimum energy position at the same time, therefore

. . . eriod \ is 1, as well as the friction coefficient of the par-
the first one has a larger chance to jump further. In this cas o .
- . . . icles. The asymmetry of the potential is characterized by the
the second one indirectly “pushes” the first one, however,

i . . ) length\;=a.
the first one also hinders the second one. But in spite of the ¢ x; denotes the position of theenter of particlej, the

hindering effect, the average velocity can even be larger thag, o\ tion of the system is then described by the Langevin
the velocity of a single particle. This situation is shown in equations:

Fig. 4(b) for 12 particles. There are no jams and the density =

waves indicate that the particles help each other to jump X ==aV(x;, D+ (1), j=1..N, @
through to the next valley. At high particle densities similarwhich are coupled by the constraint that neighbor particles
arguments hold for the explanation of the sensitive depenare not allowed to overlapx({—x;_1)>b.

dence of the average velocity draround other rational val- Let us investigate how the average velocityof the
ues, too. In case of slowly alternating external forces thesearticles depend on their sieand densityp=bN/L, in the
effects(hindering and pushingare expected to influence the limit of large systemgN andL go to infinity while p remains

net transport. finite). To get analytical solutions we focus on specific re-
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gimes: First the pinning potenti&,,, is taken strong enough 0.2

so that during the time,, the particles drift quickly to the | a=001 |
positions corresponding to the nearest local energy minimum

of the system, where they get trapped. This deep potential 0.1

valley limit (Q>kgT) furthermore suits fast separation pur-

poses. Secondy; is long enough for the particles to forget Y

(modulo the period their initial position on the sawtooth
during an “off” period. The average displacement over a 2=0.10
cycle is then that of initially randomly distributed particles 01+t R

during a single “on” phase. A
In the low-density limit, a particle with random initial “3 0

position in thg —\,,\;] period ends ax=0 after an “off”

phase. The average progression per cycle is hys 3(\, -0.1

—\1)=1/2—a. Let us now turn to the other extreme: an

almost packed systepr1. a=049
Consider the limit casep=1, where the system is

equivalent to a single particle of sitg the position of which

is measured by, for example. In the incommensurate case

(b irrational), the particles are uniformly distributed in the

periods whatever the value &f, so the whole system feels

a flat potential whether the sawtooth potential is “on” or N M B .

“off.” Therefore the average velocity of the particles is zero. Y 02 04 06 08 1

We now turn to the much richer commensurate cdse: b

=n/m in irreducible form. The effective potential seen by rig. 5. High-density limit for the average particle displacement per on—off

the equivalent.-size particle during “on” periods is a saw- cycle (d) as a function of the particles size for different values of the

tooth potential of period’=1/m with two linear pieces of asymmetry parametex

lengths\j={ma}/m and A;={m(1—-a)}/m (the notation

{---} means the fractional partand the barrier height is

NQ’, where particle sizeb fixed, the velocity can vary nonmonotonically

and can even change sign several times, along a route that

will be sensitive to the actual value bf

__{ma{m(1-a)}

Q ma-m(l—a) ©®
I1l. COLLECTIVE BEHAVIOR OF RIGIDLY ATTACHED
Applying the single particle limit to the equivalent particle, PARTICLES
we get its average displacement per cy@lich is that of In several biological studies large groups of motor pro-
every real particle teins are working together to transport relatively big objects.
Juicher and Progf introduced a model to describe the be-
r 1 havior of these systems. In this model a large number of
(d)= 2 (A2=Ay)= m (1-2{ma}). (4) particles is subject to a periodic, asymmetric potential, that is

turned “on” and “off” independently for each particle, and
the particles are attached to a rigid backbone that keeps the

It can be proveff that this result holds in that limit when
b distance between them fixé#ig. 6).

N— o is taken first and thep— 1.

This leads to a quite strange behavior for the high-
density(N—o, p=1—¢) drift as a function of the particles
size as illustrated by Fig. 5. The limit average displacement
per on—off cycle(d) is an erratic, discontinuous function
with sharp peak§given by Eq.(4)] for rational values ob,

rigid backbone

and zero otherwise. Both positive and negative peaks are 4 A
present, in a pattern that depends on the value of the asym- Vot
metry parametea.
Remember that at zero particle density, the average dis- -
on

placement per cycle is positid a<0.5), and independent
of the size of the particles. Increasing the density from O to 1,
it evolves to the discontinuous function shown in Fig. 5. The
qguestion is how this occurs. When the density is still less =

than 1 the functioqd(b)) has to be continuous, due to the *
smoothing effect of the finite temperature. It can be stdwn g6 6. schematic representation of the two-state model with many particles
that increasing the density from 0 to 1 while keeping theattached to a rigid backbone.
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In the following, we focus on the case where either theticles. As a result, the average forteulls the backbone to
particles are randomly attached to the backbone or the spathe right and increases the effect of the initial perturbation.
ing between them is constant but incommensurate with the If the potential is asymmetric the spontaneous symmetry
period of the potential. In both cases the particles are unibreaking transition is no longer possible, since the velocity is
formly distributed in the periods, and can be characterized byonzero at zero external force for any nonvanishing excita-
the probability distribution Py(x,t) and P(x,t)=1  tion Q. However, if)>Q. two stable solutions for the ve-

Pon(x,t), where O0<x<1 denotes the particle position locity can still exist, and by changing the external fofcg
with respect to the potential period and “on” and “off” the transition between the two solutions is discontinuous and
refer to the state of the potential. exhibits hysteresis.

The equations of motion for this system Zre Another version of this model, where the backbone is

elastically coupled to its environment, leads to the onset of
(5)  spontaneous oscillation instead of unidirectional mofion.
9P o+ 0 IxPoii= + @on( X) Pon— @oii(X) Pot The condition of the backbone’s rigidity can be relaxed
by assuming that the particles are attached via springs. In
wherew,(X) andweg(X) denote the transition rates between sych models weakening the interaction between the particles

the two states of the potential, and the velocity of the backa|iows us to study the crossover from single to collective
bone,v, is determined by = f,+ f (units are chosen again moetion28

so that the friction coefficient is)1 The external forcd o

3tPont v xPon=— 0o X) Pont @i X) Pot »

and the average force IV. HORIZONTAL TRANSPORT IN VERTICALLY
VIBRATED GRANULAR LAYERS
B f 0 AX(PordxVor(X) + PoidxVor(X)) © These studies of the collective motion of particles in an

. . asymmetric, periodic structure and the interesting new re-
exerted by the potentialsvhich should be zero for the flat syits for flows in excited granular materi@s* motivated us

potentia) are normalized per particle. ' to carry out a series of experiments that explore the manner
In the steady state, using the relati®h=1—Po,,  in which granular particles arkorizontally transported by
these equations reduce to means ofvertical vibration.
The investigation of a transport mechanism for granular
0 9P on=— (@orX) + (X)) Pont @o(X) (7) g P g

materials analogous to that of ratchets is an appealing idea,
both conceptually and practically. By carrying out experi-
fext:'“Lfo dXPondx(Von(X) = Vort(X)). )  ments on granular materials vibrated vertically by a base
with a sawtooth profile, it is possible to achieve a fascinating
These equations allow the determination of the external forceombination of two topics of considerable current interest,
fex(v) that corresponds to a constant veloaity Equation  ratchets and granular flows. A number of recent papers have
(8) can be solved either analytically for some potentialfocused on vibration-driven granular flow, and the details of
shapes or in a power expansion as a function of the velocityhe resulting convection patterns have been examined, both
v.2® by direct observatioi*13334and by magnetic resonance
Let US expresswy(X) as wog(x)eVonl VoV keT)  j34ing3235 Granular convection has also been simulated
+Q0(x), where now the “amplitude’() measures the dis- numerically by several groups; the study most closely related
tance from equilibriun{for Q=0 detailed balance holfilsn  to the present work deals with the horizontal transport that
order to discuss cooperative effects, we consider a systegccurs when the base is forced to vibrate in an asymmetric
with no external force and with symmetric periodic poten-manner®
tials. Let the perturbatio® (x) be non-negative, also sym- Here we describe an investigation of the horizontal flow
metric, and localized in the vicinity of the potential mini- of granular material confined between two upright concentric
mum (i.e., it differs from zero only in that regionlt can be  cylinders undergoing vertical vibration. In order to induce
showrf® that if Q is smaller than a critical valu€., the  transport, the height of the annular base between the cylin-
velocity of the backbone is zero, but for> () the solution  ders has a periodic, piecewise-linear profile other words,
bifurcates to two stable solutions=+v(Q), while thev it is sawtooth-like. We observe novel collective behavior in
=0 solution becomes unstable. Thereforeoatinuous onset the resulting material flow, both as functions of the number
of motionoccurs a) = (). via spontaneous symmetry break- of particle layers and the driving frequency. The most con-
ing. spicuous features, for the experimental parameters used here,
This spontaneous symmetry breaking can be understoagte that increasing the layer thickness results ievaersalof
qualitatively as follows. Fow=0 the localized excitation the current, and that the onset of transport as a function of
Q0O(x) leads to a depletion oP,(x) near the potential frequency takes place in a manner analogous to a phase tran-
minimum. Since®(x) and the potentials are spatially sym- sition with an exponeng=1.8.
metric, the forcd vanishes. If the system is now perturbed in
such a way that the backbone moves to the right with a smal
velocity v, the depletion oP,,(X) is being transported to the Figure 7 shows a schematic view of the experimental
right. Now the population along the positive potential slopeapparatus. To achieve a quasi-two-dimensional system with-
is depleted, while along the negative slope it has gained pawrut boundaries in the direction of the expected flow the

ﬁ\. Experiments
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FIG. 7. Diagram of the experimental apparatus. The granular material is
placed between the two glass cylinders and the whole assembly is subjected

to sinusoidal vertical vibration. FIG. 8. Horizontal velocity as a function of the number of particles. The
four curves represent measurements for different sawtooth shapes and ma-
terials and for different particle type$l) strongly asymmetric sawtooth-

L. . shaped PVC and plastic beadg) strongly asymmetric sawtooth-shaped
granular material is placed between two concentric glasgyc and glass balls{3) weakly asymmetric sawtooth-shaped PVC and

cylinders®® The mean diameter of the cylinders is 10 cm, plastic beads(4) weakly asymmetric sawtooth-shaped danamid and plastic
while the gap between the cylinders is either 3 or 5 mm. Abeads. The amplitude and frequency Are2 mm, f=25 Hz.

ring filling the gap between the cylinders, with a sawtooth

profile on its upper surface, is mounted on the base of the

container; the ring is made of either PMGsoft” ) or dana-

mid_ (*hard”), anq differg nt Sa‘“."oom shgpes are used. Th%ase the ratio of the horizontal projection of the tooth edges
entire assembly is vertically vibrated with a dlsplacementiS 1:2 (“weak” asymmetry, in the other the left-hand edge

that depends sinusoidally on time. '3 vertical (“strong” asymmetry.

Th r h ron | framework and is fix . . - .
€ apparatus has a strong steel framework and is fixe Provided the frequency is sufficiently large, the vertical

upon a heavy concrete base in order to reduce unintended

vibrations. However, these precautions do not affect the ro\_/|bration causes horizontal flow of the entire granular layer.

tational vibrations of the cylinders around their axis, which 1S bulk motion is reproducible over repeated experiments.
can lead to dramatic experimental artifacts. They have beehN® average flow velocity is determined by tracking indi-
eliminated by a horizontal steel rod fastened to the cylindersvidual tracer particles visible through the transparent cylin-
The two ends of the rod are closely fitted to vertical platesder walls. In order to average out fluctuations, the particles
allowing vertical but suppressing horizontal motion. The ver-are allowed to travel large distances; depending on the size
tical vibration of the system is provided by an electromotorof the fluctuations this distance is between 1.5 and 6 m
placed below the cylinders. The rotation of the motor is con{equal to 5-20 times the circumference of the sygtdfach
verted into vibration by an excenter, and its frequency ispoint shown in the graphs is an average over 3-6 tracer
controlled by the following method. A disk with 20 holes particles.

around its perimeter is fixed to the rotating shaft of the motor  The typical trajectory of a single tracer particle is shown
and the light passing through the holes is detected by a phaon Fig. 9. These data points were measured by using 200
tocell. The sign of the photocell is negatively fed back to theglass balls and a strongly asymmetric sawtooth-shaped PVC

motor resulting in a stable frequency. In order to make thgyase, and applying a vibration with frequerfcy 25 Hz and
load of the motor uniform a counterweight is also fixed to theamplitudeAz 2 mm. In this case the motion of the tracer

rotating shatt.

i llv diff ; h | particle is nearly uniform, but some variation of velocity can
di Our. arralmgemebnt IS natur? tﬁ ! e.retnt romft t: fe‘f"d tWo]lbe clearly seen. The two breaks in the curve correspond to
Imensional case because ot Ihe existence ot e SIEWalg, -, 5jqn | big jumps of the particle in the negative direction.

They certainly affect the motion of the particles by increas- . ) ;
: T . : . : Decreasing the number of particles these backward jumps
ing dissipation and by inducing rotation of the particles. We

become more frequent.

believe, however, that these effects only slightly modify and ) ,
do not change qualitatively our results. The tracer particles have to be chosen carefully to avoid
Two types of granular media are used in the eXperi_segregation effects. Our tracers were identical to the other

ments, monodisperse glass balls and quasiellipsoidal plastRaTticles except for their colors. The plastic beads are avail-
beads(see the inset of Fig.)8 The glass balls are nearly able in many colors, butin the case of glass balls we had to
spherical with a diameter of 3.3 mi2%. The plastic beads dye them. In most cases we used alcohol-based pens for
have a much greater size dispersion: two of the axes areoloring, so that the surface properties of the balls changed
approximately equal in length and lie in the range 2.4—3.(s little as possible. We also used colored lacquer too, but
mm, while the third axis is 1.2—1.7 mm. As shown in the because it produces a thicker layer on the surface we always
inset of Fig. 8, the size of each sawtooth is similar to that oftested the results with particles colored by alcohol-based
the particles. Two sawtooth shapes are considered; in orgens.
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800 T the flow direction depends on the layer thickness. Addition-
travelled distance [cm) ally, the well-defined maxima in the first two curves are not
T present in curves 3 and 4. Altering the particle shape reduces
600 + the velocity and shifts the location of the maximum, but the
shape of the curve remains unchanged. Likewise, changing
500 T the elasticity of the base does not alter the curve qualita-
sj tively. The different curves do nevertheless have certain fea-
400 T tures in common. For thin layefgorresponding to a small
200 | number of particlesthey all begin with positive slope. Fur-
thermore, for the thicker layeftarger numbers of particlgs
200 4 &f the vglocity is always positive. _
Figure 10 shows th& dependence of the flow velocity
100 T for a system of 200 ball&amounting to four layeysfor con-
stantA,; this graph corresponds to the experimental system
0 ’ ’ ’ ' ’ ’ shown in curve 2 of Fig. glass balls and strongly asym-
v 100 200 300 400 500 600

metric sawtooth-shaped PYCFlow occurs only above a

critical accelerationl’;=1.75. Slightly above this critical

FIG. 9. Typical trajectory of a tracer particle: the advanced distance as ¥alue the velocity appears to follow a power law

function of time. The continuous line is a linear fit. Strongly asymmetric 18

sawtooth-shaped PVC was used with 200 glass balls. The amplitude and v(I)oe(T'=T"¢)™%, 9

f =2 f=25Hz. . .

requency weren=2mm, £=25 Hz suggesting that the onset of flow resembles the kind of phase
transition observed at a hydrodynamic instability such as

B. Results thermal convectioR’

time [s]

Figure 8 shows the horizontal flow velocity as a function
of the number of particles for four dif_ferent versions of the ACKNOWLEDGMENTS
system. The actual sawtooth and particle shapes are shown in
the inset: curves 1 and 2 correspond to strongly asymmetric  This work was supported in part by Grants No. OTKA
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