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ABSTRACT We revisit some aspects of the interpretation of dynamic force spectroscopy experiments. The standard theory
predicts that the typical unbinding force f * is linearly proportional to the logarithm of the loading rate r when a single energy
barrier controls the unbinding process. For a more complex situation of N barriers, it predicts at most N linear segments for the
f * vs. log(r ) curve, each segment characterizing a different barrier. Here we extend this existing picture using a refined
approximation, provide a more general analytical formula, and show that in principle up to N(N 1 1) / 2 segments can show up
experimentally. As a consequence, the determination of the positions and even the number of the energy barriers from the
experimental data can be ambiguous. A further possible consequence of a multiple-barrier landscape is a bimodal or multimodal
distribution of the unbinding force at certain loading rates, a feature recently observed experimentally.

INTRODUCTION

The last decades have witnessed a revolution in the methods

to observe and manipulate single biomacromolecules or bio-

molecule complexes. New micromanipulation techniques

have especially been put forward to probe the folded struc-

ture of proteins and to quantify the strength of adhesion

complexes (Kellermayer et al., 1997; Nishizaka et al., 2000;

Pierres et al., 1996; Poirier et al., 2001; Rief et al., 1997;

Simson et al., 1999; Strick et al., 2003; Weisel et al., 2003).

An important step in this direction is the proposal of the

Evans group to use soft structures to pull on adhesion com-

plexes or molecules at various loading rates (dynamic force

spectroscopy) (Evans and Ritchie, 1997; Merkel et al.,

1999). Moving the other end of the soft structure at con-

stant velocity induces on the complex a pulling force that

increases linearly in time f ¼ rt. Measuring the typical

unbinding time t* yields an unbinding force f* ¼ rt* that

depends on the pulling rate r. The typical outcome of such

experiments is a plot of f* vs. log(r) (force spectrum)

composed of a succession of straight lines with increasing

slopes. It has been argued that it is possible to deduce the

values of some relevant structural parameters of the com-

plex by analyzing the force spectrum, thanks to an adiabatic

Kramers picture. In this picture the unbinding process is

considered as a thermally activated escape from bound

states over a succession of barriers along a one-dimensional

(1D) path of a mountainous energy landscape (Evans and

Ritchie, 1997; Merkel et al., 1999). Within this scheme,

each straight line of the force spectrum witnesses the over-

come of an energy barrier, and its slope maps the barrier to

a distance x along the pulling direction. This procedure has

been shown to yield reasonable values for a few systems,

and has been confirmed by numerical simulations (Grub-

müller et al., 1996).

Subsequently, theoretical studies have refined the above

original model, e.g., by inclusion of rebinding events

(Seifert, 2002); study of time-dependent loading rates (Evans

and Ritchie, 1997; Merkel et al., 1999); incorporation of

more details of the shape of the energy wells, energy barriers,

and loading potential (Hummer and Szabo, 2003; Seifert,

2002); or consideration of more complex topographies

(Strunz et al., 2000) and topologies of the energy landscape

(Bartolo et al., 2002).

In this article we explore the potential influence of the

existence of intermediate bound states on the experimen-

tal dynamic response of adhesion complexes as probed in

dynamic force spectroscopy. To achieve this goal, we first

revisit the analysis of the escape from a bound state consisting

of an arbitrary number of barriers along a 1D path under the

application of an external load (in line with earlier studies of

Strunz et al. (2000)), and then discuss the implications of this

analysis for the interpretation of experimental data. In the

third section (‘‘Stochastic kinetics of unbinding under

external forces. . .’’), the standard picture is recalled, together
with its two underlying assumptions. In the fourth section

(‘‘Beyond the deeply bound fundamental state approxima-

tion’’), we first relax the a priori assumption of a deep

fundamental bound state and provide a general expression

that relates the typical rupture force to the loading rate (within

a single escape rate approximation). The practical implica-

tions of this new formula (Eq. 15) are discussed, and

in particular we comment upon intrinsic ambiguities in

inferring information from a [log(r), f*] plot. Then we show

in the final section (‘‘Beyond the single escape rate

approximation. . .’’) that in the presence of multiple bound

states it may be necessary to relax the other assumption (a

single typical rupture force for each loading rate) as

multimodal rupture force distributions naturally show up,

a feature recently observed in lipid extraction experiments

(Evans and Williams, 2002).

Submitted July 17, 2003, and accepted for publication September 25, 2003.

Address reprint requests to Imre Derényi, Dept. of Biological Physics,
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MODEL AND NOTATIONS

Fig. 1 illustrates the energy landscape of a one-dimensional

escape path with N energy barriers and wells. The position

and energy of the ith energy well (i ¼ 0 marking the

fundamental bound state, and 1# i# N� 1 the intermediate

ones) are denoted by xi and Ei, respectively. Similarly, the

position and energy of the jth energy barrier are denoted by x̂j
and Êj, respectively (where 1 # j # N). For convenience,
without losing generality, we set x0 ¼ 0 and E0 ¼ 0 for the

fundamental bound state. The unbound ‘‘state’’ is on the

right-hand side of the Nth barrier. If the energy differences

ðÊi � EiÞ and ðÊi11 � EiÞ exceed kBT the transition rates k�i
(and k1i ) from the ith energy well over the left ith barrier (and
right (i1 1)th barrier, respectively) can be written according

to the Kramers formula

k
�
i ¼ v0aiâie

�ðÊi�EiÞ=kBT; (1)

k
1

i ¼ v0aiâi11e
�ðÊi11�EiÞ=kBT; (2)

where v0 is a typical attempt frequency, ai and âj are

geometric factors characterizing the shape of the ith energy

well and jth energy barrier, respectively. Note that there is

no transition from the fundamental bound state to the left,

therefore, k�0 [ 0.

We assume throughout the paper that the energy wells and

barriers are sharp, so that for any loading force f their locations
remain constant, and their energies change as Ei( f )¼ Ei(0)�
fxi and Êjð f Þ ¼ Êjð0Þ � f x̂j. To simplify the notations,

wherever the argument of the energies and transition rates is

omitted, a loading force f is implicitly assumed.

Finally it will prove convenient to introduce a few

compact notations. For any 0 # i \ j # N we denote the

distance between the ith well and the jth barrier (on the right)
by Dxi;j ¼ x̂j � xi, and their energy difference by DEi;j ¼
Êj � Ei. We also define a formal (effective) rate constant

from the ith well over the jth barrier on the right as

ki;j ¼ v0aiâje
�DEi;j=kBT: (3)

Obviously DEi,j and ki,j implicitly depend on f, whereas
Dxi,j are constants given the assumption of the previous

paragraph.

STOCHASTIC KINETICS OF UNBINDING UNDER
EXTERNAL FORCES: STANDARD DESCRIPTION
AND CORRESPONDING APPROXIMATIONS

We first recall the standard description of the ‘‘force

spectrum,’’ which relies on two major assumptions, namely

the single escape rate and the deeply bound fundamental

state (DBFS) approximations.

Single escape rate approximation

If for any experimentally relevant load f the equilibration

within the bound states is much faster than the escape to the

unbound state, the unbinding can be described by a single

load-dependent escape rate k( f ). Following the calculation

of Evans (1998, 2001), if rebinding is negligible (which is

the case in most experimental situations), the probability P(t)
of remaining in the bound state at time t (the survival prob-
ability of the bond) then decreases as

dPðtÞ
dt

¼ �kðrtÞPðtÞ: (4)

The solution of this differential equation is

PðtÞ ¼ exp½�
R t

0
kðrt9Þdt9�. The probability density for un-

binding between times t and t 1 Dt is pt(t) ¼ �dP(t) / dt ¼
k(rt)P(t), from which, after changing the variable from t to
f, one gets the probability density for the distribution of

the unbinding force: pf( f ) ¼ (1/r)k( f )P( f/r). The typical

unbinding force f* is defined as the peak of this probability

density: dpfð f Þ=df jf¼f� ¼ 0, which yields the simple formula

dtð f Þ
df

����
f¼f

�
¼ � 1

r
; (5)

where t( f )[ 1/k( f ) denotes the load-dependent mean escape

time. This formula gives the loading rate r at which the typical
unbinding force is f*. For practical purposes it is often

necessary to invert this relation to, e.g., predict the typical

unbinding force for an experimentally imposed loading rate.

To set a reference for further comparison, we explicitly

invert the above relation in case of a single barrier, i.e., when

tð f Þ ¼ tð0Þexpð�f x̂1Þ, and obtain

f
� ¼ kBT

x̂1
ln

rtð0Þx̂1
kBT

� �
: (6)

As mentioned in the introduction, the escape over a single

barrier results in a single straight line in the force spectrum.

The experimental observation of a linear segment conse-

quently gives hints as to the structure of the energy land-

scape, in particular the slope of the segment permits to

deduce a distance x̂1 between the energy well and the barrier.
FIGURE 1 Sketch of the one-dimensional energy landscape describing

the unbinding pathway projected along the pulling direction.
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Deeply bound fundamental state approximation

Assuming further that the fundamental bound state is much

deeper than the intermediate ones: Eið f Þ � E0ð f Þ � kBT for

any experimentally relevant load f (i.e., before unbinding has
statistically almost certainly occurred; see Fig. 2 a.), Evans
(1998, 2001) and Evans and Williams (2002) have shown

that the mean escape time from the fundamental bound state

to the unbound state is well approximated by Evans (1998,

2001) and Evans and Williams (2002)

tð f Þ ¼ +
N

j¼1

1

k0;jð f Þ
¼ +

N

j¼1

e
�fDx0;j=kBT

k0;jð0Þ
: (7)

This allows one to obtain an explicit r vs. f* relationship by
plugging Eq. 7 into Eq. 5, which yields the compact formula

r ¼ +
N

j¼1

Dx0;j
kBT

e
�f

�
Dx0;j=kBT

k0;jð0Þ

" #�1

: (8)

This equation predicts a spectrum f* vs. log(r) consisting
of a succession of at most N segments of increasing slopes,

each of which yielding an information Dx0,j about an inter-

mediate barrier.

BEYOND THE DEEPLY BOUND FUNDAMENTAL
STATE APPROXIMATION

In this section we relax the DBFS approximation, generalize

Eqs. 7 and 9 accordingly, and discuss the experimental

implications of this generalization.

Refined theory

In general, it is possible that for large enough forces one or

more of the intermediate bound states become deeper than

the fundamental bound state before unbinding has occurred

(see Fig. 2 b). In such cases the above DBFS approximation

breaks down. However, we show below that it is still

possible to compute rather simply the escape time t from the

‘‘bound state’’ to the ‘‘unbound state,’’ provided we main-

tain the assumption of a single escape rate 1/t( f ).
Let us put the system into its fundamental bound state, and

let it evolve according to the transition rates given in Eqs. 1

and 2. Whenever the system gets into the unbound state (by

making a transition over the outermost barrier) let us place

it back into the fundamental bound state. The stationary

state of an ensemble of such systems is characterized

by a probability current, which is constant everywhere and

equal to 1/t by definition. To calculate t we have to solve the

following system of equations:

Pik
1

i � Pi11k
�
i11 ¼ 1=t 0# i#N � 2; (9)

PN�1k
1

N�1 ¼ 1=t; (10)

+
N�1

i¼0

Pi ¼ 1; (11)

where Pi denotes the probability of being in the ith bound

state (0 # i # N � 1). The first N equations describe the

probability current over each of the N barriers, and the last

equation is just the normalization condition. These N 1 1

linear equations uniquely determine the N 1 1 variables (Pi

and t), and can be solved easily in a recursive way. First,

PN�1t can be expressed from Eq. 10, and then PN�2t, . . . ,
P0t recursively from Eq. 9 yielding

Pit ¼ 1

k
1

i

1
k
�
i11

k
1

i k
1

i11

1 . . . 1
k
�
i11 . . . k

�
N�1

k
1

i k
1

i11 . . . k
1

N�1

¼ +
N

j¼i11

1

ki;j
;

(12)

where Eqs. 1, 2, and the definition (Eq. 3) have been used.

Note that because the ki,j are only formal definitions,

constructed as products and ratios of the single-barrier rates

(Eq. 1) and (Eq. 2), they are meaningful even if DEi,j \ 0.

From the normalization (Eq. 11) one can easily express t as

t ¼ +
N�1

i¼0

Pit ¼ +
N�1

i¼0

+
N

j¼i11

1

ki;j
: (13)

The sum is dominated by the smallest effective rates,

which are the bottlenecks of the unbinding process.

Consequently, this formula remains a good approximation

for t even if some of the barriers disappear at big loads,

because the corresponding formal transition rates make

negligible contributions. By indicating the load force f
explicitly, we arrive at

tð f Þ ¼ +
N�1

i¼0

+
N

j¼i11

1

ki;jðf Þ
¼ +

N�1

i¼0

+
N

j¼i11

e
�fDxi;j=kBT

ki;jð0Þ
; (14)

which generalizes Eq. 7. An analytic formula can be given

for the f* vs. r relationship by plugging Eq. 14 into Eq. 5:

FIGURE 2 Sketch of two energy landscapes with one intermediate well.

Dotted drawings: no external force. When a constant force is applied,

energies are lowered by fx (dashed lines); the resulting landscapes appear in

solid lines. The dotted arrows indicate which pair of wells and barriers

control the kinetics at zero load. The solid arrows indicate the new limiting

effective escape process at higher forces. (a) The escape from the

fundamental bound state remains the limiting process whatever the pulling

force. (b) The escape from the intermediate bound state energy becomes the

limiting process at high forces.
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r ¼ +
N�1

i¼0

+
N

j¼i11

Dxi;j
kBT

e
�f

�
Dxi;j=kBT

ki;jð0Þ

" #�1

: (15)

This generalization of Eq. 8 is one of the main results of

this paper. Let us briefly comment on immediate features of

this new formula.

First, Eq. 8 is easily recovered from Eq. 15 assuming

a DBFS. Indeed, the assumption Eið f Þ � E0ð f Þ implies

k0;j � ki;j, if i [ 0 (see Eq. 3) and therefore, the relation

Pi=P0 � 1, if i[ 0 is deduced from Eq. 12. The probability

to find the system in the fundamental bound state is close to

1. So, the sum over i in Eq. 14 is dominated by the

contributions of the effective escape rates from the 0th well

only. Finally, the sum over i (labeling the intermediate states)

is reduced to its sole first term too, and Eq. 15 becomes

identical to Eq. 8.

Second, each of the N(N 1 1) / 2 terms of Eq. 15 alone

would yield a straight line in the f* vs. log(r) plot. However,
at any loading rate the highest force value (the uppermost

line, corresponding to the most difficult transition) limits the

unbinding process, therefore, the f*(r) curve is expected

to closely follow the upper envelope of these lines (see Fig.

3 a). Depending on the position of the lines, the upper

envelope can consist of up to N(N 1 1) / 2 linear segments.

Third, this last point is clearly at odds with the predictions

of the DBFS approximation. Indeed, assuming a DBFS, one

arrives at Evans’ original result with a maximum of N linear

segments, and all the remaining N(N � 1) / 2 segments,

corresponding to the escape from the intermediate bound

states, disappear.

Practical implications: ambiguity in the
determination of ‘‘structural’’ parameters

We now insist on some practical implications of the above

general description. We do not attempt a full inspection of

all the possible dynamic responses of arbitrarily complex

systems, but rather focus on two simple examples to stress

that the main features of the energy landscape can in general

not be unambiguously inferred from [log(r), f*] plots. To
emphasize the experimental relevance of this discussion, we

use for the parameters values comparable to those observed

in experimental systems. Specifically, we take the geometric

factors ai and âj values to be all equal to 1, v0 ¼ 108 s�1 and

kBT ¼ 43 10�21 J.

Ambiguity in determining the barriers positions

Fig. 3, a and b, display two force spectra as obtained from

Eq. 15. Both correspond to energy landscapes with two

barriers. Though the two [log(r), f*] plots are almost

identical they are related to very different sets of values for

the energy levels and positions (along the pulling direction)

of the wells and the barriers.

Fig. 3 a corresponds to the situation where the standard

picture to account for the two segments is well suited (Evans

and Ritchie, 1997; Merkel et al., 1999). At low force, the

escape from the fundamental 0th state over the outermost

barrier is the limiting process. The slope of the first segment

is proportional to kBT=x̂2. For the highest forces (above;30

pN), the energy of the external barrier is reduced below Ê1

and the deepest bound state remains located at x0 ¼ 0. The

process that mostly impedes the unbinding is the overcome

of the innermost barrier Ê1 with a rate k0,1. The slope of the
curve is now larger and proportional to kBT=x̂1.
Fig. 3 b corresponds to an energy landscape for which

the above explanation is inappropriate. At low force the

unbinding kinetic is controlled by the escape from the

fundamental state over the outermost barrier again. But, for

pulling forces larger than ;30 pN this outer barrier remains

the highest (see inset in Fig. 3 b). However the slope of the
spectrum increases as in the Fig. 3 a case. The reason is that

the deepest (and most occupied) bound state is now located

FIGURE 3 Two very similar force spectra corresponding to different

energy landscapes with one intermediate well. Curves in solid lines: force

spectra plotted using Eq. 15. It closely follows the upper envelope of the

straight lines corresponding to the transitions: k0,2 (dotted line), k0,1 (dashed

line), and k1,2 (dash-dotted line). Insets: shape of the energy landscapes at

low and high forces, each drawn with the same line style as the straight line

associated with the limiting transition. Parameter values: (a) ðx̂1; Ê1Þ ¼
ð1 nm; 11 kBTÞ, (x1, E1) ¼ (1.5 nm, 8 kBT), and ðx̂2; Ê2Þ ¼ ð2 nm; 20 kBTÞ;
(b) ðx̂1; Ê1Þ ¼ ð0:5 nm; 12 kBTÞ, (x1, E1) ¼ (1 nm, 9 kBT), and ðx̂2; Ê2Þ ¼
ð2 nm; 20 kBTÞ.
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at x ¼ x1 and the presence of the second segment actually

witnesses the escape from this intermediate state to the

unbound state with a rate k1,2. The value of the second slope

scales therefore with kBT=ðx̂2 � x1Þ. Because the escape rate
k1,2 in the Fig. 3 b case is equal to the escape rate k0,1 in

the Fig. 3 a case, the two spectra in Fig. 3 turn out to be

indistinguishable and cannot be a priori associated with one

of the two possible landscapes.

Ambiguity in determining the number of barriers

After having shown with the simple example above that

ambiguity can exist in determining distances from dynamic

force spectra, we show here that even more strikingly it is

impossible in general to assess the number of wells and

barriers. Again we use a simple example to do so.

Fig. 4 displays two force spectra obtained using Eq. 15.

They are both well approximated by a succession of three

segments with increasing slopes. Again, the two [log(r), f*]
curves are very similar although they are constructed from

landscapes that do not even comprise the same number of

peaks and wells.

In Fig. 4 a the three segments describe the escape from

the same fundamental state over the three distinct energy

barriers. The larger the pulling force, the closer the limiting

barrier to the fundamental state (see inset in Fig. 4 a).
In Fig. 4 b, the landscape consists of only two barriers.

However, the force spectrum reveals that three different

escape processes can limit the unbinding kinetic. At low

forces ð f & 50 pNÞ; the two observed linear segments result

from the escape form the fundamental state over the two peaks

at x̂1 and x̂2; respectively. Conversely, at high forces it is the

escape from the deeply lowered intermediate state over the

outer barrier that determines the escape rate (see inset drawing

with dash-dotted line in Fig. 4 b). With the chosen parameters

the effective rates k0,3, k0,2, and k0,1 in the Fig. 4 a case cor-

respond respectively to k0,2, k0,1, and k1,2 in the Fig. 4 b case.
Thus the two plots are indistinguishable and cannot be used to

predict the number of barriers along the 1D escape path.

In conclusion of this subsection, we suggest great care in

inferring features of the underlying energy landscape from

dynamic force spectroscopy experiment. Our generalized

equation may be helpful in dealing with the corresponding

ambiguity as it allows (with some work) to generate various

landscapes that can account for the observed data, whereas

Eq. 8 can only yield a single set of parameters (e.g., those

used for the plots in Figs. 3 a and 4 a).

BEYOND THE SINGLE ESCAPE RATE
APPROXIMATION: MULTIMODAL UNBINDING
FORCE DISTRIBUTIONS

Up to this point we have been considering a generalized

theory in which the DBFS approximation is dropped, but the

unbinding is still approximated as a simple first-order escape

process. Indeed, the validity of Eq. 15 relies on the assumption

that at any moment the distribution of the populations of the

bound states can be well approximated by the distribution

corresponding to a homogeneous stationary current.

This is, however, not always the case. As we stated earlier,

the sum of the 1/ki,j( f ) terms in Eq. 14 is dominated by the

smallest effective rate constant ki9,j9( f ) corresponding to the

slowest effective transition. A consequence of this is that all

the bound states located to the left of barrier j9 are close to

equilibrium (because of the slow outflow over barrier j9), and
the population of any state located to the right is negligible

(because they practically belong to the unbound state). Now,

if the slowest transition rate changes from ki9,j9( f ) to ki0,j0( f )
as the loading force f is increased, and if j0 \ j9, then

a considerable population might remain in the intermediate

bound states between the new and the old limiting barriers, j0
and j9, respectively. This residual population is incompat-

ible with the new stationary current dominated by ki0,j0( f ),
and must escape in a different way, yielding a secondary

maximum of the unbinding force distribution (see Fig. 5,

b and c).

FIGURE 4 Two very similar force spectra corresponding to energy

landscapes with different numbers of intermediate wells. The rule of the line

styles is the same as in Fig. 3: (a) dotted lines: k0,3, dash-dotted lines: k0,2,
dashed lines: k0,1. (b) dotted lines: k0,2, dash-dotted lines: k1,2, dashed lines:

k0,1. Parameter values: (a) ðx̂1; Ê1Þ ¼ ð0:6 nm; 14 kBTÞ, (x1, E1) ¼ (0.7 nm,

12 kBT), ðx̂2; Ê2Þ ¼ ð1:1 nm; 19 kBTÞ, (x2, E2) ¼ (2 nm, 16 kBT), and

ðx̂3; Ê3Þ ¼ ð2:5 nm; 24 kBTÞ. (b) ðx̂1; Ê1Þ ¼ ð1:1 nm; 19 kBTÞ, (x1, E1)¼ (1.9

nm, 10 kBT), and ðx̂2; Ê2Þ ¼ ð2:5 nm; 24 kBTÞ.
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The escape of the majority of the population (located to

the left of the new limiting barrier j0) can still be characterized
by Eq. 14 of our generalized theory. On the other hand, we

have to slightly modify this formula to describe the escape of

the residual population (trapped between the new and old

limiting barriers). Because j0 is the limiting barrier now,

almost the entire residual population can escape without ever

jumping backward over barrier j0. Therefore, for the residual
population we can consider barrier j0 as a reflecting boun-

dary, and describe the escape by our general theory in this

modified potential. Eq. 14, e.g., changes accordingly:

tð f Þ ¼ +
N�1

i¼j0

+
N

j¼i11

1

ki;jðf Þ
¼ +

N�1

i¼j0

+
N

j¼i11

e
�fDxi;j=kBT

ki;jð0Þ
: (16)

Consequently, the absolute maximum of the unbinding

force distribution always follows the upper envelope of the

N(N 1 1) / 2 lines, however, some secondary maxima might

also appear at lower forces, which follow the upper envelope

of only a subset of the lines (comprising (N� j0)(N� j0 1 1) /

2 elements). Such secondary maxima of a multimodal force

distribution give important information on the internal

structure of the energy landscape of the unbinding path,

and make the determination of the number and positions of

the energy wells and barriers less ambiguous. It is actually

a nice achievement of our generalized theory to be able to

make sense of the segments of secondary maxima in a unique

frame for fitting parameters (see, e.g., Fig. 5, where the seg-

ment corresponding to the secondary maximum corresponds

to the transition from the intermediate bound state (1) over

the rightmost barrier (2), a step neglected in the DBFS

approximation). The possibility of a bimodal distribution for

the case of a two-state system has already been reported by

Strunz et al. (2000), and our description systematizes and

generalizes their findings.

To provide a simple illustration for the somewhat formal

discussion above, we also focus on a system consisting of

two bound states, as depicted in Fig. 5 a. Increasing the

force, the limiting transition rate changes from k0,2 to k1,2 and
then to k0,1. In the range of the loading rate r between ;104

and 105 pN/s the intermediate bound state (1) has enough

time to accumulate a large population, which is then flushed

by the k1,2 transition before the transition k0,1 flushes the rest
from the fundamental bound state (0). In the range above 106

pN/s the intermediate bound state (1) cannot accumulate

much of the population, but it still possesses a small fraction

of the initial equilibrium distribution, which is again flushed

by the k1,2 transition first.

FIGURE 5 A scenario that yields a multimodal unbinding force

distribution. (a) Three snapshots of the energy landscape for the pulling

forces: f ¼ 0 pN (dotted line), f ¼ 18 pN (dash-dotted line), and f ¼ 60 pN

(dashed line). The three arrows indicate the corresponding most difficult

transitions. Parameters values: ðx̂1; Ê1Þ ¼ ð0:5 nm; 16 kBTÞ, (x1, E1) ¼ (1.1

nm, 4 kBT), and ðx̂2; Ê2Þ ¼ ð2:3 nm; 24 kBTÞ. (b) Force spectrum (solid line)

associated with the landscape described in a plotted using Eq. 15. The full

probability density pf( f ) for unbinding at force f is plotted in grayscale in the
inset. It has been obtained by following the procedure described in Bartolo

et al. (2002). The circles in the main plot represent the local maxima of the

distribution. (c) The unbinding force distribution pf( f ) for four different

values of the loading rate: r ¼ 33 103, 33 104, 33 105, and 33 106 pN/s

from left to right.
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Very recently the Evans group actually reported the

experimental occurrence of a bimodal force distribution

(Evans and Williams, 2002). The corresponding experiment

consisted of pulling on ‘‘diC14 PE’’ lipids from a bilayer

made of ‘‘C18:0/1 PC’’ lipids. With the help of our gen-

eralized theory, Evans and Williams were able to fit their

data and interpret the results in terms of an energy landscape

with two barriers (see Ref. 3 in Evans and Williams, 2002).

CONCLUSION

In this article, we have revisited the standard theory used to

account for the dynamic response of molecular stickers. Our

refined description, valid for an arbitrarily complex one-

dimensional energy landscape, has allowed us to highlight

several practical consequences of the diversity of the pos-

sible unbinding scenarios. For example several markedly

different energy landscapes can yield the same rupture force

distribution. To resolve this ambiguity other experimental

techniques, e.g., flow chamber experiments (Pierres et al.,

2002), are then required. We have also identified the physi-

cal origin of multimodal unbinding force distributions and

shown how their analysis provides information on the un-

binding pathways.
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