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Dynamic response of adhesion complexes: Beyond the single-path picture
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We analyze the response of molecular adhesion complexes to increasing pulling forces~dynamic force
spectroscopy! when dissociation can occur along either one of two alternative trajectories in the underlying
multidimensional energy landscape. A great diversity of behaviors~e.g., nonmonotonicity! is found for the
unbinding force and time as a function of the rate at which the pulling force is increased. In particular we
identify a class of ‘‘harpoon’’ stickers that bind easily but resist strong pulling efficiently. Using existing data,
we also demonstrate the consequent difficulty of unambiguously determining the features of the energy land-
scape from such single-molecule pulling experiments.
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INTRODUCTION

The last decades have witnessed a remarkable deve
ment of physical investigation methods to probe single m
ecules or complexes by various micromanipulation mea
Techniques have been put forward to probe the unfolding
proteins and to quantify the strength of adhesion structu
@1–5#. An important step in this direction is the proposal
the group of Evanset al. to use soft structures to pull o
adhesion complexes or molecules at various loading r
~dynamic force spectroscopy! @6#. Moving the other end of
the soft structure at constant velocity induces on the comp
a pulling force that increases linearly in timef 5rt . Measur-
ing the typical rupture timet typ yields a typical rupture force
f typ5rt typ that depends on the pulling rater. This provides
information as to the energy landscape of the bound c
plex. Indeed, in many situations one observes a linear
crease off typ with log(r), which can be understood within
simple adiabatic Kramers picture for the escape from a w
~bound/attached state! over a barrier of heightE located at a
projected distancex from the well along the pulling direc
tion. The progressive increase of the force results in a co
sponding increase of the escape rate, so that, in agree
with some experiments@6#, the typical rupture forcein-
creases logarithmically with r: f typ.@kBT/x# ln@rx/(kBTv)#,
wherev is the escape rate in the absence of force. The r
ture time on the other handdecreases with r. The occurrence
in some cases of two successive straight lines in
@ f typ , log(r)# plot has been argued to be the consequenc
having two successive barriers along the one-dimensio
~1D! escape path, the intermediate one showing up in
response at fast pulling rates@6# @Figs. 1~a! and 2#. Other
theories have tried to back up more complete information
to the overall effective 1D potential landscape by an analy
of the probability distribution for rupture time and of th
statistics of trajectories before rupture@7,8#. Assemblies in
series and in parallel of such 1D bonds have also been
sidered@9–11#.
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In this paper we point out limitations arising from thea
priori assumption of a single-path topology of the ener
landscape for the interpretation of such experiments. Fr
the analysis of simple examples with a two-path topolo
we draw three conclusions:~i! first, the dependence of th
rupture force and rupture time on the pulling rate can ta
various forms, includingnonmonotonicbehavior ~see e.g.,
Figs. 3–5!. ~ii ! Second, the main features of the energy lan
scape cannot be unambiguously deduced from a@ f typ , log(r)#
plot, as very different landscapes can yield similar curv
~Fig. 6!. ~iii ! Third, we propose simple ‘‘harpoon’’ design
@Figs. 1~c! and 1~d!# for functionally efficient stickers tha
can bind easily but strongly resist in a range of pulling forc
~Fig. 4!.

Obviously for real binding/adhesion complexes, there

FIG. 1. Sketch of the topology of the main valley of the ener
landscape for a few examples. 0 denotes the fundamental bo
state,A andB are local minima, anda, a8, b, andb8 are passes to
overcome. To the right~increasing values ofx) of the last passes is
the continuum that describes unbound states.~a! Classical single-
path scheme.~b!, ~c!, and ~d! Unbinding can occur through two
alternative routesa andb.
©2002 The American Physical Society10-1
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numerous~conformational! degrees of freedom, and the co
figurational space is clearly multidimensional. This allow
for complex energy landscapes and various topologies for
structure of their valleys and passes@12#. Only the probing
~pulling! is unidirectional. We note in passing that even f
more macroscopic sticky systems, usual adhesion tests
soft adhesives often show up hysteresis loops associated
the existence of more than one degree of freedom@13#. We
do not attempt here an exhaustive exploration of effects
lowed by the multidimensionality of the phase space,
rather focus on a few simple two-path topologies~Fig. 1!, to
argue for the three points mentioned above. Their experim
tal relevance is emphasized by the use of realistic values
the plots throughout and by direct comparison to experim
tal data in Fig. 6.

MODEL

We consider three simple examples, sketched in F
1~b!, 1~c!, and 1~d!, where detachment can proceed throu
two alternative routesa andb. A common set of notations
can be ascribed for all cases~Fig. 1!. From the fundamenta
bound-state ‘‘0,’’ the routea for escape~detachment! is over
barriersa, of height Ea located at a projected distancexa
from ‘‘0.’’ Alternatively, escape can occur through branchb,
over barrierb, of heightEb and projected distancexb . All
energies and projected distances are measured relative t

FIG. 2. Classical picture for a single-path energy landscape@6#
@Fig. 1~a!#: the probability densityP( f ) for unbinding at forcef is
plotted in gray scale as a function of the pulling rater. The typical
force f typ ~locus of the maximum ofP) is highlighted with a dashed
line. Plotted curves correspond toEa8512, xa850.5, EA59, xA

51, andEa520, xa52. At very low pulling rates unbinding is no
affected by the pulling and proceeds over barriera with a ‘‘sponta-
neous’’ ratev0exp(2Ea). For larger pulling rates the typical un
binding force f typ increases linearly with log(r), with a slope pro-
portional to 1/xa . Increasing further the pulling rate leads to
steeper slope}1/xa8 corresponding to escape over the inner barr
a8. These asymptotes are depicted with solid lines. The das
arrows along the drawings indicate which pairs of energy well a
barrier are probed in these asymptotic limits. Inset: mean rup
time against pulling rate.
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state ‘‘0’’ ~i.e., E050 andx050!. Intermediate barriersa8,
b8, and local minimaA andB may exist, with energiesEa8 ,
Eb8 , EA , andEB ~all positive!, and projected distancesxa8 ,
xb8 , xA , and xB . In line with typical values from experi-
ments, we choose to write energies in units ofkBT
.4 pN nm and distances in nm.

For these quasi-1D-situations, we follow the strate
adopted for single-path geometries@6# and use an adiabati
Kramers theory, an efficient way of obtaining semiquanti
tively correct answers@14#. Practically, we describe the tim
evolution of the probabilities of being in the potenti
minima ~bound states! using transition rates given by Kram
ers formula for the instantaneous energy profile. We furth
more assume the attempt frequencies to be constant an
equal tov0, which sets the time scale in the problem, so th
the transition rate from minimumI over the neighboring bar
rier i is v0exp@2(Ei2EI)1f(t)(xi2xI)#. For the plots of
Figs. 2–6 we take arbitrarilyv05108 s21. Jump over the
rightmost barrier~a or b! of either path corresponds to rup
ture leading to escape tox→`.

We focus on the case where eitherEb8 or Eb is larger than
Ea so thata is the ‘‘natural’’ route by which attachment an
detachment proceedsin the absence of pulling. We also limit
ourselves to simple scenarios in which the force is linea
increased in timef 5rt .

For further reference we recall the classical single-p
scenario@Fig. 1~a!# in Fig. 2 for a typical set of parameters
and then we turn to a brief analysis of the three geomet
we have introduced@Figs. 1~b!, 1~c!, and 1~d!#.

FIRST CASE: SWITCH

Topology as in Fig. 1~b!. Barriera andb are both located
downwards in the pulling direction (xa ,xb.0). The escape
proceeds through patha at weak pulling rates asEa,Eb ,
but if xb.xa it switches to pathb for pulling forcesf large
enough such thatEa2 f xa.Eb2 f xb . The result~see Fig. 3!

r
ed
d
re

FIG. 3. Switch geometry@Fig. 1~b!#: same quantities as in Fig
2, for Ea520, xa50.5, andEb530, xb52. Unbinding is controlled
by escape overa at low pulling rates, and overb for higher values
of r: the slope of the unbinding force~average or typical! decreases
from 1/xa to 1/xb .
0-2
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is then a succession of two straight lines of decreasing slo
in the@f typ , log(r)# plot, a feature forbidden in the single-pa
picture. The first slope (}1/xa) is characteristic of the spon
taneous routea while the second (}1/xb) provides informa-
tion on the alternative routeb. Similar curves are expecte
for the rupture of two bonds in series, which is a particu

FIG. 4. Harpoon geometry@Fig. 1~c!#: same quantities as in Fig
2, for Ea520, xa522, Eb540, andxb52. Pulling impedes un-
binding through the spontaneous routea, so that for strong enough
pulling, escape is controlled by the higher barrierb, resulting in a
jump of the typical unbinding force and time. Inset: the avera
unbinding time is nonmonotonic.

FIG. 5. ‘‘Selective harpoon’’ from the combo topology@Fig.
1~d!#: same quantities as in Fig. 2, forEa520, xa52, Eb8510,
xb850.5, EB55, xB51.5, Eb527, andxb52.5. At low pulling
rates the spontaneous patha is used. Upon increase ofr, larger
forces are employed and the minimumB becomes favorable a
compared to 0. AsEb8 is not too large, equilibration of populatio
then empties 0 inB, so that escape eventually occurs fromB overb,
resulting in a higher straight line of slope}1/(xb2xB). At even
higher pulling rates, becausexa.xb8 , the escape overa becomes
faster than this equilibration, and patha is used again. Barriera
controls the behavior at low and high rates, but in an intermed
window, a stronger bonding is provided by barrierb. The typical
~dashed line! or average unbinding force is nonmonotonic.
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case of this switch topology@9#. In the trivial casexa.xb
routeb is never explored so that the single-path picture
plies.

To clarify the calculation leading to the plot in Fig. 3, w
describe the evolution of the probability of attachmentp(t)
at time t of the system initially attached at timet50 @p(0)
51# by

dp

dt
~ t !52v0~e2Ea1 f (t)xa1e2Eb1 f (t)xb!p~ t !. ~1!

Solving Eq. ~1! numerically with f 5rt yields p(t) and
therefore the probability density for the unbinding for
P( f )52r 21dp/dt. In the plots, this distribution is sug
gested through a gray scale, while the location of its ma
mum which defines the typical valuef typ , is highlighted with
a dashed line. Similar procedures are used for the follow
examples, with thermal equilibrium between the bound sta
assumed as initial condition.

SECOND CASE: HARPOON

Topology similar to the previous one but withxa,0 @Fig.
1~c!#. The main feature here is that as the pulling force

e

te

FIG. 6. Experimental data on the L-selectin@17# ~circles! and
curves from quite diverse energy landscapes that all provide g
fits. ~a! Classical single path of Fig. 1~a!, with the numbers deduced
by the authors of@17# from their data:Ea8513.75, xa850.08, EA

57.5, xA50.25, Ea517.5, andxa50.45. ~b! Classical single path
of Fig. 1~a!, with Ea8510, xa850.2, EA53.75, xA50.37, andEa

517.5, xa50.45. ~c! Combo two-path geometry@Fig. 1~d!#, with
Ea517.3, xa50.32, Eb8513, xb850.4, EB57, xB50.6, andEb

520.8, xb50.68. Thanks to the two-path topology, the third sc
nario is able to account for a slight decrease of the slope at in
mediate values.
0-3
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creases, the probability to escape overa decreases. Therefor
the system gets ‘‘stuck’’ in routeb @15#. If the barrierEb is
infinite @left side of Fig. 1~c!#, there is a finite probability
p`5exp@2v0(ruxau)21e2Ea

# that unbinding never occurs. Fo
a finite but high barrierEb , pulling eventually results in
unbinding but at high rupture forces~see Fig. 4!. The topol-
ogy thus allows here to form ‘‘easily’’~i.e., over barriera! a
‘‘harpoon’’ sticker that can resist strong pulling. Correspon
ingly the mean unbinding time increases first with pulli
rate ~a phenomenology connected to the negative resista
analyzed in Ref.@16#!, before decreasing for larger value
when activated escape overb dominates. Note that the prob
ability distribution P( f ), now consists of two separate e
sembles, which coexist over a narrow region of pulling rat
This is in contrast with Fig. 3 where there is a continuo
evolution of a single cloud.

THIRD CASE: COMBO

The alternative route consists of two barriers and a lo
minimumB @Fig. 1~d!#, and we focus on the case whereEb8
is smaller than the two others.

Thanks to the increased complexity and number of par
eters in this case many scenarios can occur, covering fea
already unveiled in Figs. 2–4~e.g., switch and harpoon!.
More intricate pictures can also show up, as depicted in
5. An explanation of this example is given in the captio
illuminating how for low or high pulling rates barriera con-
trols the behavior, whereas for intermediate values, the
ondary and stronger barrierb limits unbinding. Two features
are striking. First, the unbinding force~typical or average! is
no more monotonic. Second, branchb results in a strength
.E
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ening of the binding complex for a given window of pullin
ratesr ~selective harpoon!.

DISCUSSION

The analysis of the three simple examples above has
veiled a wide range of behaviors that one may expect fr
dynamic force spectroscopy measurements~see Figs. 3–5!.
Conversely, we also stress the point~ii ! mentioned in the
Introduction: even clear-cut outcomes of experiments, s
as the succession of two lines of increasing slopes, do
constitute unambiguous signatures of the energy landsca
To substantiate this, experimental data on the L-selectin fr
@17# are plotted against calculations corresponding to se
bly different landscapes in Fig. 6. Not only are the typic
and average unbinding forces very similar in the three ca
but so are the probability distributions for most values ofr,
so that it is difficult to discriminate between the three lan
scapes from this sole set of data. This would require ad
tional information, that could, e.g., be obtained using oth
temporal sequences than the simplef 5rt .

Eventually we point out that the harpoon geometries p
posed here constitute a very obvious paradigm for effici
stickers. Attachment of the sticker can proceed through ro
a with a possibly not too high barrierEa . The harpoon
configuration then allows us to benefit from the much stro
ger b barrier for a given window of pulling forces, makin
the sticker more efficient in these conditions. This ‘‘hoo
design is obviously a favorable strategy for adhesion co
plexes, the function of which is to maintain adhesion und
the action of well-defined tearing stresses. It would be s
prising if advantage was not taken of this by some biologi
systems.
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