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Abstract. In this article we give an in depth overview of the recent advances in the
field of equilibrium networks. After outlining this topic, we provide a novel way of
defining equilibrium graph (network) ensembles. We illustrate this concept on the clas-
sical random graph model and then survey a large variety of recently studied network
models. Next, we analyze the structural properties of the graphs in these ensembles
in terms of both local and global characteristics, such as degrees, degree-degree corre-
lations, component sizes, and spectral properties. We conclude with topological phase
transitions and show examples for both continuous and discontinuous transitions.

1 Introduction

A very human way of interpreting our complex world is to try to identify subunits
in it and to map the interactions between these parts. In many systems, it is
possible to define subunits in such a way that the network of their interactions
provides a simple but still informative representation of the system. The field of
discrete mathematics dealing with networks is graph theory.

Research in graph theory was started by Leonhard Euler [1]. In the 1950s
another major step was taken by Erdés and Rényi: they introduced the notion
of classical random graphs [2-4]. By the late 1990s more and more actual maps
of large networks had become available and modeling efforts were directed to-
wards the description of the newly recognized properties of these systems [5-9].
A network is constructed from many similar subunits (vertices) connected by
interactions (edges), similarly to the systems studied in statistical physics. Be-
cause of this analogy, the methods by which some of the central problems of
statistical physics are effectively handled, can be transferred to networks, e.g.,
to graph optimization and topological phase transitions.

In this article we will discuss the construction of network ensembles that fit
into the concept of equilibrium as it is used in statistical physics, with a focus
on structural transitions [10-14]. Note that even though structural transitions in
growing networks are non-equilibrium phenomena [15-17], some of the main fea-
tures of the structures constructed by growth can be reproduced by non-growing
models (see, e.g., . [11,12,18]). Similarly, non-growing graphs are not necessarily
equilibrium systems (see, e.g., [8]). Closely related real-world phenomena and
mathematical models are the configurational transitions of branched polymers
[19], structural transitions of business networks during changes of the “business”
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climate [20,21], the transitions of collaboration networks [22], networks defined
by the potential energy landscapes of small clusters of atoms [23], and potentials
on tree graphs as introduced by Tusnddy [24].

In the present review we intend to go beyond those that have been published
previously [8,12,25], both concerning the scope and the depth of the analysis.

We will focus on the structure of metworks, represented by graphs, and will
not consider any dynamics on them. Thus, several widely studied models are
beyond the scope of the present review: models using, e.g., spins on the vertices
[12,26-31], disease spreading [32-34] agent-based models on networks [35], or
weighted edges and traffic on a network [36-39].

Definition: Natural networks mostly arise from non-equilibrium processes,
thus, the notion of equilibrium in the case of networks is essentially an abstrac-
tion (similarly to any system assumed to be in perfect equilibrium). We define
equilibrium network ensembles as stationary ensembles of graphs generated by
restructuring processes obeying detailed balance and ergodicity. During such a
restructuring process, edges of the graph are removed and/or inserted.

This definition raises a few issues to be discussed. First of all, the character-
istic timescale of rewiring one particular link varies from system to system. For
example, the network of biochemical pathways [40] available to a cell can undergo
structural changes within years to millions of years, in contrast to business inter-
actions [20,22], which are restructured over time scales of days to years, while the
characteristic times of technological networks may be even shorter. With a finite
number of measurements during the available time window it is often difficult to
decide whether a graph that has not been observed has a low probability or it
is not allowed at all. Hence, the set of allowed graphs is often unclear. A simple
way to by-pass this problem is to enable all graphs and tune further parameters
of the model to reproduce the statistics of the observed typical ones.

Once the set of allowed graphs has been fixed, the next step in the statistical
physics treatment of a network ensemble is to fix some of the thermodynamic
variables, e.g., for the canonical ensemble one should fix the temperature and
all extensive variables except for the entropy®. At this point, an energy function
would be useful. Unfortunately, unlike in many physical systems, the energy of
a graph cannot be derived from first principles. A possible approach for deriving
an energy function is reverse engineering: one tries to reproduce the observed
properties of real networks with a suitable choice of the energy in the model.
Another possibility can be to explore the effects of a wide range of energy func-
tions on the structures of networks. Alternatively, to suppress deviations from
a prescribed target property, one can also introduce a cost function (energy).
Having defined the energy, one can proceed towards a detailed analysis of the
equilibrium system using the standard methods of statistical physics.

Often a complete analogy with statistical physics is unnecessary, and short-
cuts can be made to simplify the above procedure. It is very common to define
graph ensembles by assigning a statistical weight to each allowed graph, or to

3 In the mathematics literature, the entropy of graphs has been analyzed in detail
[41-43).
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supply a set of master equations describing the dynamics of the system, and
to find the stable fixed point of these equations. Of course, skipping, e.g., the
definition of the energy will leave the temperature of the system undefined.
This article is organized as follows. In Sect. 2 we introduce the most impor-
tant notions. Section 3 will concentrate on currently used graph models and the
construction of equilibrium graph ensembles. Section 4 will discuss some of the
specific properties of these sets of graphs. In Sect. 5 examples will be given for
topological phase transitions of graphs and Sect. 6 contains a short summary.

2 Preliminaries

Except where stated otherwise, we will consider undirected simple graphs, i.e.,
non-degenerate graphs where any two vertices are connected by zero or one undi-
rected edge, and no vertex is allowed to be connected to itself*. The number of
edges connected to the ith vertex is called the degree, k;, of that vertex. Two
vertices are called neighbors, if they are connected by an edge. The degree se-
quence of a graph is the ordered list of its degrees, and the degree distribution
gives the probability, p, for a randomly selected vertex to have degree k. The
degree-degree correlation function, p(k, k'), gives the probability that one ran-
domly selected end point of a randomly chosen edge will have the degree k and
the other end point the degree k'

The clustering coefficient of the ith vertex is the ratio between the number
of edges, n;, connecting its k; neighbors and the number of all possible edges
between these neighbors:

U
c ki(ki —1)/2° W
The clustering coefficient of a graph is C; averaged over all vertices. The shortest
distance, d; j, is defined as the smallest number of edges that lead from vertex
1 to j. Finally, a set of vertices connected to each other by edges and isolated
from the rest of the graph is called a component of the graph.

The two basic constituents of a simple graph are its vertices and edges, there-
fore it is essential whether a vertex (or edge) is distinguishable from the others.
In this article, we will consider labeled graphs, i.e., in which both vertices and
edges are distinguishable. A graph with distinguishable vertices can be repre-
sented by its adjacency matrix, A. The element A;; denotes the number of edges
between vertices ¢ and j if i # j, and twice the number of edges if ¢ = j (unit
loops). For simple graphs, this matrix is symmetric, its diagonal entries are 0,
and the off-diagonal entries are 0 or 1. Note, that the adjacency matrix is insen-
sitive to whether the edges of the graph are distinguishable: swapping any two
edges will result in the same A.

4 In a degenerate (or pseudo) graph multiple connections between two vertices and
edges connecting a vertex to itself are allowed. Some additional extensions are to
assign, e.g., weights and/or fitnesses to the edges and vertices.
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Also, it is possible to define equivalence classes of labeled graphs using graph
isomorphism: two labeled graphs are equivalent, if there exists a permutation of
the vertices of the first graph transforming it into the second one. As a conse-
quence, each equivalence class of labeled graphs can be represented by a single
unlabeled graph (in which neither the edges nor the vertices are distinguishable).
These equivalence classes will be referred to as topologies, i.e., two graphs are
assumed to have the same topology, if they belong to the same equivalence class.
This definition is the graph theoretical equivalent of the definition of topology
for geometrical objects, where two objects have the same topology, if they can be
transformed into each other through deformations without tearing and stitching.

The focus of this article is on graph restructuring processes. Denoting the
transition rates between graphs a and b by 7., the time evolution of the
probability of the graphs in the ensemble can be written as a set of master
equations:

- Z(Pbrb—nl - Para—>b) ) (2)
b

where P, is the probability of graph a.

If the dynamics defined in a system has a series of non-zero transition rates
between any two graphs (ergodicity), and there exists a stationary distribution,
Pt fulfilling the conditions of detailed balance,

stat stat
P; @ Ta—b = lt)bg & Tb—a (3)

then the system will always converge to this stationary distribution, which can
thus be called equilibrium distribution.

In the reverse situation, when the equilibrium distribution is given, one can
always create a dynamics that leads to this distribution. Such a dynamics must
fulfill the conditions of detailed balance and ergodicity. Since the detailed bal-
ance condition (3) fixes only the ratio of the rates of the forward and backward
transitions between each pair of graphs (a and b), the most general form of the
transition rates can be written as

Tasb = Vap Py , (4)

where all vy, = vy, values are arbitrary factors (assuming that they do not
violate ergodicity).

3 Graph Ensembles

Similarly to Dorogovtsev et. al [8,12] and Burda et. al [44], we will discuss graph
ensembles in this section. According to statistical physics, for a rigorous analysis
one needs to define the microcanonical, canonical, and grand canonical ensem-
bles. However, even if some of the necessary variables, (e.g., the energy) are not
defined, it is still possible to define similar graph ensembles.
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In equilibrium network ensembles, the edges (links) represent particles and
one graph corresponds to one state of the system. In this article we will keep
the number of vertices constant, which is analogous to the constant volume
constraint.

3.1 Ensembles with Energy

Energy is a key concept in optimization problems. Even if it is not possible to
derive an energy for graphs from first principles, one can find analogies with
well-established systems, and also phenomenological and heuristic arguments
can lead to such energy functions [10-14], as described in the Introduction.

Microcanonical Ensemble

In statistical physics, the microcanonical ensemble is defined by assigning iden-
tical weights to each state of a system with a given energy, E, and a given
number of particles; all other states have zero weight. Thus, the definition of a
microcanonical ensemble is straightforward: assign the same weight,

PNC =t (5)

to each of the n graphs that has M edges and energy E, and zero weight to all
other graphs.

Canonical Ensemble

The canonical ensemble is composed of graphs with a fixed number of edges,
and each graph a has a weight

efEa/T
Pac = T ) (6)

where T is the temperature, F, is the energy of this graph, and
26 =Y e BT (7)
b

denotes the partition function. Network ensembles with a constant edge number
and a cost function to minimize the deviations from a prescribed feature (e.g.,
a fixed total number of triangles), belong to this category.

Grand Canonical Ensemble

The grand canonical ensemble is characterized by a fixed temperature (T') and
a fixed chemical potential (u1). The energy and the number of edges (particles)
can vary in the system, and the probability of graph a is
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e_(E‘a_N]wa)/T

GC _
P, =~ g ac (8)

where F, and M, denote the energy and edge number of graph a respectively,
and

ZGC — Zef(Ebfu,]\/fb)/T (9)
b
is the partition function.

3.2 Ensembles Without Energy
Microcanonical Ensemble

Numerous network models are defined through a static set of allowed graphs, and
no restructuring processes are involved. Even if no energies and no probabilities
are provided for these graphs, the microcanonical ensemble can still be defined
by assigning equal weight to each allowed graph [8,45]. This is equivalent to
assigning the same energy to each allowed graph (and a different energy to all
the others).

Canonical Ensemble

If a graph model provides probabilities, { P, }, for a set of graphs with an identical
number of edges, then it can be considered as a canonical ensemble. One can
easily construct an energy function from the probabilities using (6):

E,=-TlogP,+1ogZ. (10)

That is, the energy can be defined up to a factor, 7', and an additive term, log Z.

The Grand Canonical Ensemble

This ensemble is very similar to the canonical ensemble except that even the
number of edges is allowed to vary. In this case an energy function can be con-
structed from (8):

E,=-TlogP, + uM, + log Z , (11)

and a new, arbitrarily chosen parameter, u, appears.

3.3 Basic Examples
The Classical Random Graph

We will discuss this classical example to illustrate the concept of equilibrium
network ensembles. The classical random graph model is based on a fixed number
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(N) of vertices. The model has two variants. The first one [2] is the G(N, M)
model: M edges are placed randomly and independently between the vertices of
the graph. The second variant [3] is the G(N, p) model: each pair of vertices in
the graph is connected via an edge with a fixed probability, p. In both variants
the degree distribution converges to a Poisson distribution in the N — oo limit:

<k>k67<k>
k! ’

where (k) = 2M/N in G(N, M) and (k) = pN in G(N,p). Viewing the edges as
particles, the constant edge number variant of the classical random graph model
corresponds to the microcanonical ensemble, since each particular configuration
is generated with the same probability. In the constant edge probability variant,
only the expectation value of the number of “particles” is constant, and can be
described by the grand canonical ensemble.

At this point one should also mention the notion of the random graph process
[2,4], a possible method for generating a classical random graph. One starts with
N vertices, and adds edges sequentially to the graph at independent random lo-
cations. In the beginning, there will be many small components in the graph, but
after a certain number of inserted edges — given by the critical edge probability,
pe — a giant component® will appear. This transition is analogous to percolation
phase transitions. The fraction of nodes belonging to the largest component in
the N — oo limit is [4]

PE — (12)

nn—l

G(</~:>):1—<;>nz_j1 (e @) (13)

This analytical result and actual numerical data [46] showing the appearance of
the giant component are compared in Fig. 1.

The Small-World Graph

Another well-known example for a graph ensemble is the small-world model
introduced by Watts and Strogatz [5]. The construction of a small-world graph
starts from a one-dimensional periodic array of IV vertices. Each vertex is first
connected to its k nearest neighbors, where k is an even positive number. Then,
each edge is moved with a fixed probability, r, to a randomly selected new
location. This construction leads to a canonical ensemble: the number of edges
is constant and the probabilities of the individual graphs in the ensemble are
different, because the number of rewired edges can vary.

Ensembles with a Fixed Degree Distribution

Many real-world graphs have a degree distribution that decays slowly, as a power
law, as measured and described by Barabdsi, Albert and Jeong [6,48]. These

® Note that the growth rate of this component is sublinear: it grows as O(N?/?) [47].
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Fig. 1. Size of the largest component in a classical random graph as a function of the
average degree, a = (k), of a vertex. Note that for N > 10° the Monte Carlo data is
almost indistinguishable from the theoretical result in (13). Error bars are not shown,
because in all cases the error is smaller than the width of the lines. The inset shows
the transition in the vicinity of the percolation threshold, a. = 1. Figure from [46].

graphs are often referred to as scale-free. On the other hand, the classical random
graph’s degree distribution has a quickly decaying (1/k!) tail (see (12)). The
degree distributions of graphs have become central to numerous analyses and
various graph ensembles with fixed degree distributions have been developed [8,
12,44].

Given a network with the degree distribution py, there exist several rewiring
algorithms that retain the degrees of all nodes at each rewiring step and generate
an equilibrium ensemble of graphs. Two examples are the link randomization
[49] and the vertex randomization [50] methods. In both methods, two edges
are selected first, and then one of the end points of each edge is picked and
swapped, ensuring that none of the degrees are changed. The two methods are
explained in detail in Fig. 2. The resulting canonical ensembles will have the
degree distribution p in common, but can have different equilibrium weights
for the individual graphs. As pointed out by Xulvi-Brunet et. al [50], upon link
randomization the degree-degree correlations are removed from a network, but
vertex randomization builds up positive degree-degree correlations.
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Fig. 2. Generating graph ensembles by randomization methods that leave the degree
sequence of a graph unchanged. (a) Link randomization. First, one selects two edges of
the graph randomly. These are indicated by heavier lines: edges 1 — 2 and 3 — 4. Then,
one end point of each edge is selected randomly — the end points at vertices 1 and 3,
respectively — and the selected end points of these two edges are swapped. (b) Vertex
randomization. One starts with selecting two vertices at random (vertices 5 and 6 in
the example). Next, one of the edges at each vertex is picked randomly and their end
points at the selected vertices are swapped.

3.4 Examples for Graph Energies

Energies Based on Vertex Degrees

The most obvious units in a graph are the vertices themselves. Therefore, it is
plausible to assign the energy to each vertex separately:

N
E=3 fk). (14)

Note that if the number of edges is constant, then the linear part of f is irrelevant
(since its contribution is proportional to the number of edges in the graph), and
simply renormalizes the chemical potential in case of the grand canonical ensem-
ble. In the infinite temperature limit any f will produce the classical random
graph ensemble. If f decreases faster than linear, e.g., quadratically,

N
=1
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then at low temperatures the typical graphs will have an uneven distribution of
degrees among the vertices: a small number of vertices with high degrees and a
large number of vertices with low degrees. In a model of Berg et. al [10], to avoid
the occurrence of isolated vertices and vertices with large degrees, the following
energy was proposed:

B=Y [~ 5], (16)

=1

and graphs containing vertices of zero degree were not allowed.

Energies Based on Degrees of Neighboring Vertices

Energies can also be assigned to edges,
E=7Y g(kikj), (17)
(4,5)

where the summation goes over pairs of neighboring vertices (i.e., over the edges).
Energy functions of this type inherently lead to correlations between vertices, as
demonstrated by Berg and Léssig [10] using

g(ki, kj) = COn, 10k, 1, (18)
see Fig. 3. Another example for this type of energy is

glks, by = 2nlhicks) 19)

max(ki, kj) ’

Fig. 3. Optimized networks generated by Berg and Léssig [10] using (a) energies with
local correlations, see (17), and (b) energies based on global properties, see (23). In
both cases, the temperature, T, was low. Notice that in both graphs disassortativity is
present (see Sect. 4.1): vertices with high degrees (hubs, indicated by filled circles) are
preferentially connected to vertices with low degrees (empty circles). Figure from [10].
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Fig. 4. (a)-(d) Snapshots of the simulation used by Baiesi and Manna [11] to generate
an ensemble of scale-free equilibrium networks from a Hamiltonian dynamics, and (e)-
(f) the Monte-Carlo rewiring method used during the simulation. The initial network
is constructed from N links and N vertices: the vertices are connected as a ring. Later,
M—N (M > N) further edges are added to the network and the Monte-Carlo dynamics
with the energy of (19) is used to decide whether a randomly selected edge, connecting
vertices ¢ and ji, should be rewired to connect the previously unconnected pair of
vertices, i and j2. Blue (dark) edges meet at the vertex with the highest degree. Figure
from [11].

which favors different degrees at the end points of an edge [11] (see Fig. 4 and
Sect. 4.1).

To account for correlations over longer distances, a logical next step would
be to add terms containing second neighbor interactions, e.g.,

1
E:—gTrA37 (20)

which counts the number of triangles in the graph with a negative sign. If the
number of edges can be written as M = n(n — 1)/2 with an integer n (n <
N), then at low temperatures this energy leads to a complete (fully connected)
subgraph on n vertices, leaving the rest of the vertices (N — n) isolated.

Energies Based on Global Properties

The most apparent global properties of a network are the sizes® of its compo-
nents, and especially, the size of the largest component, sy,.¢. A simple form of
an energy containing component sizes is [13]

E= Zf(si), (21)

where n is the number of components in the graph and s; is the size of the ith
component.

The simplest form of the energy is proportional to the size of the largest
component

E = —Smax.- (22)

5 Component sizes are usually defined as the number of vertices in a component,
however, in this article, because of the edge—particle analogy, s; is the number of
edges in the ith component.
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In the ensemble defined by this energy as the temperature is lowered a phase
transition occurs which is analogous to the density dependent transition of the
classical random graph (see Sect. 3.3). This linear energy function was found

to give a continuous transition [14], and the quadratic, E = —s2, or E =
N 2 . . . . L.
— Y i1 s energies result in discontinuous transitions.
A possible goal of optimization can be to decrease the graph’s diameter. This

can be realized with, e.g., the energy [10]
E=> d;, (23)
(2]

where the summation goes over all pairs of vertices. See also Fig. 3 for a typical
network generated with this energy function.

3.5 Mapping the Graph onto a Lattice Gas

A simple, natural mapping of a graph with NV vertices onto a lattice gas with
N(N — 1)/2 lattice sites” is shown in Fig. 5. One particle of this lattice gas
corresponds to one edge of the original graph, and can be at any of the N (N —
1)/2 lattice sites. Two lattice sites are neighbors, if the corresponding two edge
locations (not necessarily occupied by edges) of the original graph have one
end point in common. Note that this lattice strongly differs from the lattices
generally used for lattice gases. Taking an arbitrary edge of the graph, there are
2(N — 2) other possible edges sharing an end point with this edge: in the lattice
gas, therefore, each site has 2(IN —2) first neighbors. All the other N(N —1)/2—
2(N —2) — 1 sites are second neighbors.

The quadratic single-vertex energy is analogous to the usual definition of the
energy for a lattice gas with nearest neighbor attraction,

N

E:—Znangz—zw, (24)

empty lattice site

ticle of lattic y
particle of lattice gas (possible edge of the graph)

(one edge of the graph)

Fig. 5. Mapping a graph onto a lattice gas. One edge of the graph corresponds to
one particle. There are N(N — 1)/2 possible locations for an edge in a graph: these
locations correspond to the sites of the lattice.

7 This lattice is called the edge-dual graph of the complete (fully connected) graph of
N vertices [4]. One lattice site corresponds to an edge in the complete graph.
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a standard choice to describe the nucleation of vapors. Here n,, is the occupation
number of lattice site «, which is 0 or 1, depending on whether the corresponding
edge exists in the original graph. The summation in the first sum goes over all
pairs of neighboring particles in the lattice gas, which corresponds to all pairs
of edges sharing an end point in the original graph.

This analogy can be extended to an Ising model with a Kawasaki-type dy-
namics, where spins have s, = 2n, — 1 = %1 values and from (24) the energy
of the system is

Sa+1 Sg + 1
E=—
> (25)
(a,8)
which can be written as
N(N-1)/2
1 1 N(N —-1)(N -2)
E = —4(§)sa5@ —5 az::l Sa — 3 . (26)

Mapping the equilibrium graph ensemble with the — 3", k? energy onto a lat-
tice gas shows that the only difference between this equilibrium graph ensemble
and a lattice gas with the nearest neighbor attraction £ = — Z(aﬁ) NgNg on,
e.g., a cubic lattice is the underlying lattice.

3.6 Ensembles of Degenerate Graphs

Degenerate graphs occur in almost all kinds of real-world networks, e.g., in food
webs (cannibalism), biochemical interaction networks (autocatalytic or multi-
ple reactions), technological networks (multiple connections between subunits),
collaboration networks (repeated co-authorships), and also in field theoretic ex-
pansions of particle interactions in the form of Feynman graphs [51].

Ensembles of degenerate graphs [8,12,44] can be introduced similarly to the
case of simple graphs. The microcanonical ensemble on the set of all labeled
degenerate graphs can be defined by assigning the same weight to each graph
with N vertices and M edges. The number of these elements can be given as
follows. There are N (NN + 1)/2 possible locations for an edge in a degenerate
graph: one can pick two different vertices to be connected by an edge in N(N —
1)/2 different ways, and the number of locations for self-connections is N. Each of
the M (distinguishable) edges can be placed into any of these possible N(N+1)/2
locations yielding

pMC = (N(N2+ 1)>M (27)

for the microcanonical probability distribution.

It is straightforward to define a microcanonical ensemble on a subset of la-
beled degenerate graphs. Since the degree distribution is a characteristic property
of most real-world graphs, it can be used to select a subset: labeled degenerate
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graphs with N vertices and a fixed degree distribution, py, meaning that for each
value of k there are exactly N (k) = Npy vertices in the graph with that degree.
A given degree distribution is realized by many adjacency matrices, and each
adjacency matrix is further realized by many labeled degenerate graphs (because
the edges are distinguishable).

Since each graph has the same weight in the microcanonical ensemble, the
probability of a given adjacency matrix, A, is proportional to the number of
different graphs, N'(A), that realize this particular adjacency matrix®:

N

PMC(A) x N(A)= M! H A“/2 (28)

Dorogovtsev et. al [12] have constructed canonical ensembles of degenerate
graphs by equilibrium processes that keep the degree distribution and the num-
ber of edges fixed. At each step of such a process one end of a randomly chosen
edge is moved to a new vertex, 4, selected with a weight w(k;). Similarly, the
removal of edges (with a rate AN ) together with the insertion of new edges be-
tween vertices ¢ and j (with a rate proportional to w(k;)w(k;)) lead to grand
canonical ensembles.

4 Main Features of Equilibrium Graphs:
Local and Global Properties

In this section, the characteristic features of equilibrium graph ensembles will be
discussed. We will start with local properties and will proceed towards properties
taking into account larger groups of vertices.

4.1 Local Correlations

Most networks obtained from experimental data contain significant correlations.
Therefore, it is a natural requirement that the models describing them should
also contain correlated quantities. The frequent occurrence of connections be-
tween vertices of similar properties such as, e.g., similar degrees, has been termed
assortativity, and the higher probability of connections between vertices with
different degrees was termed disassortativity. In social and biological networks,
both assortativity and disassortativity have been observed [49,52].

One possible way of constructing a random graph with a given degree-degree
correlation, p(k, k'), is the following [53]. First, the degree distribution, pg, of
such a graph has to be determined from

8 The M edges of the graph can be permuted in M! ways. There are A;;! equivalent
permutations of the edges between vertices j and k, but they all represent the very
same graph. Similarly, there are (A4;;/2)! such equivalent permutations of the unit
loops at vertex 1.
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Zp(kv k/) = % ) (29)
W

where (k) = >, kpy is a condition for self-consistence. Next, one needs to assign
a random number, ¢;, to each vertex i from the degree distribution, pg. Finally,
one should go through each pair of vertices, 7 and j, in the graph and put a link
between them with probability
N pg, Py,

A short technical comment here is that not all p(k, k’) functions can ensure that
the degree-degree correlation of the networks constructed with this algorithm
converges to p(k, k') in the N — oo limit. The necessary condition is that p(k, k)
should decay slower than exp(—vk — V&) [54].

An alternative approach could be to generate a canonical ensemble with a
cost function (energy) to suppress deviations from the prescribed p(k, k') (see
Sect. 3.1).

4.2 Global Characteristics
Component Sizes

One of the often studied global properties of networks has been the size of the
largest component. Whenever the number of vertices in this component, spax, is
in the order of the total number of vertices, it is called the “giant component”.
In the classical random graph, the giant component appears at the critical edge
density, (k) = 1. (see [4] and Sect. 3.1). Below this density the largest component
contains O(log N) vertices and above this density it will start to grow linearly.

In a random graph with a fixed degree distribution, py, the condition for the
giant component to exist is [55,56]

N

k(k —2)pk > p1 . (31)
k=3

At the transition point, the component size distribution of a random graph with
any fixed degree distribution is known to decay as a power law with the exponent
—3/2 [55]. Near the transition, the component size distribution follows a power
law with an exponential cutoff. This is in analogy with percolation phenomena,
where the component sizes also have a power law distribution at the critical
point. An analytic treatment of connected components in random graphs with
fixed degree sequences is available in [57].

Spectral Properties

Work related to the spectral properties of random structures was launched by
Wigner’s semicircle law [58]. His result enabled the modeling of complex quantum



178 I. Farkas et al.

mechanical systems lying far beyond the reach of exact methods and later it was
found to have numerous applications in statistical and solid state physics as well
[59,60]. As one particular extension of Wigner’s work, Fiiredi and Komlés [61]
proved that the spectral density of a classical random graph also converges to a
semicircle. It is important to note that in the classical random graph the number
of edges is pN?/2 with p=const., i.c., it grows quadratically with the number of
vertices. The general form of the semicircle law valid for the classical random
graph [62] states that the spectral density of A/\/pN, apart from the largest
eigenvalue, will converge to

1 /A2 .
S0) = {(QW) VIS X2, if|A| <2 (3
0, otherwise.

The largest eigenvalue is detached from the rest of the spectrum, and scales as
pN = (k), while the second largest one is about 2¢/pN = 2,/(k) [63,64]. Note
that reducing the density of edges may destroy the semicircular distribution. In
the case of a sparse® classical random graph (i.e., with a fixed average degree)
p(A) converges to a distribution rich in singularities [65,66].

The next class of networks to be analyzed is graph ensembles with a fixed
power law degree distribution. For both real-world networks and graph models
having a power law degree distribution, the overall shape of the spectral density
differs from the semicircle and the largest eigenvalues follow a power law distri-
bution [65,71,72] (see Fig. 6). Chung et. al [73] have found that a fixed power
law degree distribution with the exponent v can be analytically connected to a
power law tail of the spectral density with the exponent a:

a=2y-—1, if v>25. (33)

The findings of related numerical and analytical studies [65,68,70] are in agree-
ment with this result. Evidently, the large eigenvalues are caused by the large
degrees in the graph. More precisely, it can be shown that the largest eigenvalues
can be approximated by the square roots of the largest degrees [69]. We men-
tion here that the spectral properties of a graph are closely related to random
walks on the graph and to the electrical resistance of the graph as a network of
resistors. For a concise review we refer the reader to [74].

5 Topological Phase Transitions
in Equilibrium Network Ensembles

As already mentioned, a widely studied phase transition in an equilibrium net-
work ensemble is the occurrence of the giant component in the classical random

9 Sparse graphs are a common version of graphs expressing the fact that there is a
cost associated to each connection, therefore, the average degree is limited even when
N — oo.
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Fig. 6. Average spectral densities of scale-free graphs. (The average degree is (k) = 10.)
Main panel: Graphs with N = 100 (—), N = 1000 (-~ —), and N = 7000 (- - -) vertices
and a degree distribution decaying as pr o< k=7 (v = 3). A continuous line shows the
semi-circular distribution for comparison. The central part of the scale-free graph’s
spectral density is spiked in contrast to the flat top of the semi-circle. Also, the scale-
free graph’s spectrum decays as a power law, while the semicircular distribution decays
exponentially at its edges [67]. Inset: The upper and lower tails of p(A) (open and full
triangles) for scale-free graphs with N = 40,000 vertices. Note that both axes are
logarithmic and p(X) has a power law tail with the same decay rate at both ends of the
spectrum. The line with the slope —5 (i.e., the exponent v = 5) in this figure is a guide
to the eye, and at the same time a numerical prediction also that was later confirmed
by analytic results [68-70]. Figure from [65].

graph model as a function of the density of edges. For (k) < 1, there is a similar
transition in the ensemble with the ' = —sp,,x energy as a function of the tem-
perature (see later). An appropriate order parameter for such transitions is the
normalized size of the largest component, @5 = Smax/M. In transitions where a
condensation of edges onto one vertex (or a small number of vertices) occurs,
the normalized largest degree, @, = kmax /M, is the most appropriate order pa-
rameter. In general, such transitions where some global statistical property of
the topology changes (measured by an order parameter), will be referred to as
topological phase transitions.
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Ensembles with Single-Vertex Energies

For several decreasing single-vertex energies (e.g., £ = =), k%), a dispersed-
connected phase transition can be observed as the temperature is changed. In
the T' — oo limit the dynamics converges to a completely random rewiring
process (independent of the energy function chosen), and the classical random
graph ensemble is recovered. At lower temperatures, since the decreasing nature
of the energy function rewards high degrees, new phases appear with vertices of
macroscopic degrees.

Analytic calculations for the E = — Y, k? energy with (k) < 1 show that
between the classical random graph phase (at high temperatures) and a phase
with a star (at low temperatures) there exists a finite intermediate temperature
range where both phases are stable or metastable. This predicted discontinuous
transition [13], has been confirmed by Monte-Carlo simulations (see Fig. 7). In
the graph ensemble defined by the E = — 3", k; log(k;) energy, two phase tran-
sitions can be observed. Both analytical and numerical results [14] support that
when the temperature is lowered, the classical random graph first collapses onto
a small number of stars accompanied by a jump in the order parameter, @y, (see
Fig. 8a). In fact, in the N — oo limit this is a second order transition with an
infinitely large critical exponent at T' = T, = 1. Further lowering the tempera-
ture will lead to another transition: a compactification where all edges collapse
onto the minimum possible number of vertices (see Fig. 8b). This transition is
discontinuous with a hysteresis.

Note that for both single-vertex energy functions discussed here the total
energy of the system in the different topological phases scales differently with
N, which is connected to the singular changes in the average degree (see caption
of Fig. 7).

Transient Ensembles vs. Growing Networks

Non-equilibrium processes, such as, growth, can produce a high variety of net-
work ensembles. Some of these ensembles can also be constructed with the help
of an equilibrium dynamics as a transient ensemble, i.e., as an intermediary and
temporary ensemble between an initial set of graphs and the final, equilibrium
ensemble. In the case of the E = — 3" k;log(k;) energy, during the process of
relaxation from the classical random graph phase to the star-like phase near
the critical temperature, T, = 1 (see Fig. 8b for two typical graphs illustrating
these two phases), the degree distribution of the graphs in the transient ensem-
ble decays continuously, as a power law (see Fig. 8c). The qualitative description
of this phenomenon is the following. During the transition there is a “pool” of
edges attached to vertices of small degrees, and a small number of vertices with
higher degrees serve as centers of condensation. The change of energy associ-
ated with moving edges within the “pool” is negligible, whereas the nucleation
centers are accumulating edges at a rate proportional to their degrees'®. This

10°1f an edge from the “pool” is moved to a vertex with a large degree (k), then the
energy of the system changes by approximately AE = dE/0k = —logk — 1. In
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dispersed star

T high, @~ 0 Tlow, ®=1

Fig. 7. Topological phase transition in the graph ensemble defined by the F =
— 3, k?/2 graph energy. (a) The order parameter ® = &4 = kmax/M as a function of
the temperature and the system size ({(k) = 0.5). The simulations were started either
from a star (corresponding to T' = 0, solid line) or a classical random graph (correspond-
ing to T' = o0, dashed line). Each data point represents a single run, and averaging was
carried out between the simulation times of ¢ = 100N and 200N Monte-Carlo steps.
The thick solid line shows the analytically calculated spinodal T3 = M/ log(N). This
panel is from [14]. (b) Two typical graphs from the two phases of the graph ensemble.
At low temperatures, edges are condensed onto one vertex (@ = 1), and the total en-
ergy of the system is non-extensive: it scales as N2. At high temperatures, one has a
dispersed classical random graph with @ =~ 0, and the total energy of the system scales
as N.

mechanism, produced by an equilibrium dynamics, is analogous to the preferen-
tial attachment rule of growing (non-equilibrium) models of scale-free networks
[6,48], which also lead to power law degree distributions.

—AE/T

the equilibrium dynamics the rate of this step will be e x k at the critical

temperature, T' = T. = 1.
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Fig. 8. Topological phases of the graph ensemble defined by the energy E =
— >, kilog(k:). (a) The largest degree, kmax, for N = 10,224 vertices and M = 2,556
edges. Each data point shows the value of kmax averaged in one simulation run be-
tween the simulation times of ¢ = 5,000/N and 20,000N MC steps. The data points
are connected to guide the eye. There is a sharp, continuous transition near 7' = 0.85
and a discontinuous transition (with a hysteresis) around 7' = 0.5 — 0.6. (b) The three
different plateaus in (a) correspond to distinct topological phases: kmax = O(1) to
the classical random graph, kmax = O(M) to the star phase (a small number of stars
sharing most of their neighbors) and kmax = O(v/M) to the fully connected subgraph.
(¢) At T = 0.84 and t = 600N, one minus the cumulative degree distribution, i.e.,
1-P(k) = fok dk'py, follows a power law, thus, the degree distribution decays as a
power law also. Figure from [14].

Ensembles with Neighboring Vertex Energies

Baiesi and Manna [11] have analyzed the canonical ensemble of connected graphs
defined by the energy shown in (19). This energy favors degree dissasoratativity,
i.e., a negative degree-degree correlation. As a function of temperature three
phases have been identified in this ensemble: the classical random graph at T' —
00, scale-free graphs at intermediate temperatures, and a phase with a small
number of stars at low temperatures.
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Fig. 9. Analytical phase diagram and Monte-Carlo simulation results for the graph
ensemble defined by the ' = —smax energy. Main panel: The white and shaded areas
correspond to the ordered phase (containing a giant component) and the disordered
phase, respectively as given by (34). Inset: The order parameter @ = @5 = Smax/M
obtained from Monte-Carlo simulations as a function of the inverse temperature for
(k) = 0.1 (triangles) and (k) = 0.5 (circles). Each data point shows averages taken
for 10 runs between the simulation times of ¢ = 100N and 500N Monte-Carlo steps.
The open and closed symbols represent N = 500 and 1,000 vertices, respectively.
The critical exponent, in agreement with the analytical approximations (solid lines,
see [13]), was found to be 1. Figure from [14].

Ensembles with Component Energies

Similarly to the single-vertex case, a decreasing, component-size dependent en-
ergy can also lead to phase transitions. The simplest case which we analyze in
this paragraph, is E = —spax. At low densities ((k) < 1) one can observe a clas-
sical random graph at T' — oo, whereas at low temperatures a giant component
is present. It can be shown that the dividing line between the two topological
phases is [14]

1
(k) — 1 —log((k)) ’

which is also supported by numerical results (see Fig. 9). In the vicinity of the
critical temperature the order parameter can be approximated as

Te((k)) =

(34)
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Fig. 10. Phase diagram of the two-parameter ensemble of scale-free tree graphs pre-
sented in [44]. Two phases were identified: generic and crumpled. The points of the
dividing line to the right from the dot are scale-free graphs and belong to the generic
phase. Figure from [44].

@:(T) -9 T - Tc_l(<k>)

)7 30 +2 (35)

indicating that the phase transition is continuous (see Fig. 9 for details).

Further Ensembles

For the ensembles of degenerate graphs introduced by Dorogovtsev et. al [12]
(see Sect. 3.6), with w(k) < k + 1 — =, a critical line, (k) = kc(7), was found.
Below this line the degree distribution has an exponential cutoff and above that
a condensate occurs where a finite fraction of all edges is attached to an infinitely
small fraction of nodes.

In an ensemble of connected tree graphs with a fixed, power law degree
sequence, Burda et. al [44] have reported a phase transition as a function of
two parameters: 7, the exponent of the degree distribution, and «, related to
the probability of subgraphs (see Fig. 10). The analytic form of the dividing line
between the identified generic and crumpled phases was computed, and numerical
simulations were carried out using a Monte-Carlo sampling technique.

6 Summary

Graph models with energies provide a natural way to define microcanonical,
canonical and grand canonical ensembles. These ensembles are often generated
by equilibrium restructuring processes obeying detailed balance and ergodicity.
Also, to describe a wider range of network models, it is useful to extend the
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definition and consider ensembles without energy as well. We have reviewed
the main features of currently studied equilibrium graph ensembles, with a fo-
cus on degree-degree correlations, component sizes and spectral properties. We
have also discussed continuous and discontinuous topological phase transitions
in equilibrium graph ensembles. A solid basis of the equilibrium statistical me-
chanics of networks, as presented in this article, can facilitate the application
of statistical physics tools in the field of networks, and can help to expand the
analyses towards problems of high current interest, such as optimization and
reverse engineering.
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