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and J. Prost2,5

1 Department of Biological Physics, Eötvös University, Pázmány P. stny. 1A,
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Abstract. There is a growing pool of evidence showing the biological importance
of membrane nanotubes (with diameter of a few tens of nanometers and length
upto tens of microns) in various intra- and intercellular transport processes. These
ubiquitous structures are often formed from flat membranes by highly localized forces
generated by either the pulling of motor proteins or the pushing of polymerizing
cytoskeletal filaments. In this chapter we give an overview of the theory of membrane
nanotubes, their biological relevance, and the most recent experiments designed for
the study of their formation and dynamics. We also discuss the effect of membrane
proteins or lipid composition on the shape of the tubes, and the effect of antagonistic
motor proteins on tube formation.

7.1 Introduction

Eukaryotic cells are typically a few microns to a few tens of microns in size.
Even at these small scales, there is a clear organization of spatially and func-
tionally separated compartments (organelles) for different cellular functions:
the nucleus for coding and storing the genetic information, the endoplasmic
reticulum (ER) for the synthesis of proteins and lipids, the Golgi apparatus
for the sorting of proteins according to their destination, the mitochondria for
ATP production, or the chloroplasts for photosynthesis. A much-simplified
sketch of a eukaryotic cell is presented in Fig. 7.1. The cells, and the or-
ganelles within them, are bounded and separated from the rest of the world
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Fig. 7.1. Sketch of the internal organization of a eukaryotic cell. The arrows indicate
the movement of membrane compartments along the microtubule cytoskeleton

by membranes. These membranes are made up of a mixture of different types
of lipids that form a bilayer, and also contain a large number of membrane
proteins.

7.1.1 In vivo Occurrences of Membrane Tubes

One important mechanism through which different compartments are shaped
and spatially distributed is the action of motor proteins and the cytoskeleton.
The cytoskeleton forms a dense network of tracks throughout the cell, and
functions as an infrastructure for the movement of motor proteins that pull
on the membrane compartments. This results either in the movement of the
compartments through the cell or, if opposing forces are present, in their
deformation, such as the formation and elongation of membrane tubes (also
known as tethers), which are only a few tens of nanometers in diameter, but
can reach tens of microns in length.

Motor proteins convert the chemical energy of ATP or GTP into mechan-
ical work, and can typically generate forces up to 6 pN (the stall force [1]).
Based on sequence homology, there are three main families of motors: kinesins,
dyneins, and myosins [2]. Kinesin and dynein move along microtubules (MTs),
whereas myosin along actin filaments. MTs grow by the polymerization of 8-
nm-long tubulin dimers, which gives them a natural periodic and asymmetric
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structure. Motors recognize this asymmetry: kinesin moves towards the plus-
end, while dyneins move towards the minus-end of the MT in 8-nm steps [3].
There are, however, exceptions: the kinesin-family protein ncd [4] moves in the
minus-end direction. While the details of the movement of individual motors
begin to be unraveled [2, 5–8], it is clear that dimerization (or oligomeriza-
tion) of motor proteins is crucial to their processivity (i.e., the number of
steps taken before dissociation from the MT).

Conventional kinesin e.g., which is a dimer, takes on average ∼100 steps
of 8 nm, and it can move at speeds up to 1 µm/s [2]. When an external force
is applied to kinesin (e.g., with optical tweezers or through cargo), the speed
of the motor decreases until it stops moving at the stall force and, at the same
time, the average number of steps before detachment decreases. Dynein, the
dominant motor for minus-end directed movement along MTs, consists of a
complex of proteins [9], making it difficult to work with for in vitro studies
(genetic modification, expression, and purification). Ncd has been shown to
be a non-processive motor: upon each contact with a MT it moves ∼9 nm and
subsequently detaches [10]. The speed at which ncd can move MTs in gliding
assay [2] has been measured to be 0.1–0.15 µm/s [11].

The different organelles in cells have characteristic shapes, which are dy-
namic in the sense that they are constantly being remodeled and deformed.
From our point of view, in this review, the most interesting ones are the endo-
plasmic reticulum (ER) and the Golgi apparatus. The ER is often described
as consisting of two different parts: the rough ER and the smooth ER. The
rough part consists of flat sacs covered with ribosomes, whereas the smooth
part consists of a network of interconnected membrane tubes. These tubes give
the ER its characteristic appearance of a net-like labyrinth, which colocalizes
with the MT cytoskeleton (see Fig. 7.2, [12,13]).

In the smooth ER, new tubes are continuously being formed and existing
ones disappear [14] by the action of motor proteins that move along MTs [15].
The importance of motors and the cytoskeleton is demonstrated by experi-
ments in which the expression of kinesin is suppressed [16] or the MTs are
depolymerized [17]. In both cases the tubular membrane network retracts
towards the cell center and no tubes are being formed anymore. Tubular net-
works can also be observed in cell extracts, providing more insight into the
relevant processes involved [18–20]. Such experiments have recently allowed
for the determination of the forces required to form tubes from Golgi and ER
membranes [21].

The Golgi apparatus is often characterized as a stack of flattened mem-
brane sacs. Like the ER, the Golgi apparatus is also a dynamic organelle. On
the cis side membranous cargo carriers that arrive from the ER fuse with the
Golgi membrane, while on the trans side tubulovesicular membrane compart-
ments form [22] and pinch off for further transport [23]. Motor proteins that
move along MTs have been suggested to form and extend these tubes.

In addition to the shaping of larger organelles, motor proteins and the cy-
toskeleton are essential for intracellular transport as well. The compartmen-
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Fig. 7.2. Fluorescently labeled microtubules (a) and endoplasmic reticulum (b) are
distributed in vivo throughout the cell, and show a close colocalization (c and d).
Adapted from [12]. The bar in (b) is 10 µm and in (d) is 5 µm

talization of the cell requires the movement of material between the different
organelles. Cargo carriers for intracellular transport are small membrane com-
partments. Historically, it was thought that they had a spherical shape, and
were around 100 nm in size. Recent advances in microscopy, especially the
specific fluorescent labeling of proteins (GFP technology [24]) have led to the
observation that transport carriers in fact have many different shapes. For
example, large parts of tubes formed from the Golgi apparatus are cleaved off
at once, and subsequently transported [23, 25]. This process of cleavage, the
correct movement to the target organelle and the subsequent fusion are in-
tricate processes themselves that require the activity and assembly of protein
complexes and cofactors on the membrane [26,27].

Motor proteins are not the only molecules that can generate localized
forces and pull out tubes from membranes. When polymerizing cytoskeletal
filaments hit a flat membrane, then they can also generate tubes by pushing
the membrane further. Polymerization forces can potentially even be larger
(∼50 pN for MTs [28]) than the maximal force that a single motor protein
can exert. Cilia and flagella [29] are such MT-based protrusions of the plasma
membrane (cell membrane). They are responsible for the movement of a vari-
ety of eukaryotic cells. In addition, filopodia [29], which are exploratory motile
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structures that form and retract with great speed, are generated by rapid lo-
cal growth of actin filaments that push out the plasma membrane. Adhesive
fingers between cells can also be formed by actin polymerization [30]. Re-
cent experiments show that intercellular nanotube networks can be generated
via actin polymerization (in rat neural and kidney cells [31], and also in hu-
man immune cells [32]) or via transient cell-cell contact (in human immune
cells [33]), and that these networks provide a novel mechanism for intercellular
communication.

Even though the important role of motor proteins and the cytoskeleton for
membrane tube formation is well-established, it should be noted that there are
other mechanisms through which curvature may be imposed on membranes
that result in shape changes. One may for example think of the assembly of
a protein coat with an intrinsic curvature on the membrane, or proteins or
lipids that change the local composition of one of the monolayers [34,35].

7.1.2 In Vitro Experiments

For a better understanding of the relevant physics involved in tube formation
and to measure the elastic properties of membranes, several experimental
techniques have been developed for pulling nanotubes from cell membranes
and synthetic vesicles. Historically, membrane nanotubes (tethers) were first
observed to be formed from red blood cells attached to glass surfaces and
subjected to hydrodynamic flows [36]. This was later followed by other hy-
drodynamic flow experiments [37,38], and the application of small beads that
are attached to the membranes and manipulated mechanically [39–41] or via
optical and magnetic tweezers [21, 42–48]. Very recently, motor proteins and
polymerizing MTs have been used to form membrane tubes from artificial
vesicles [47,49–51]. Sheetz and co-workers have also shown that tubes can be
extracted from neuronal growth cones and other cells with optical tweezers
and were able to measure the extrusion force as a function of length [52–54].
In all cases, tethers were shown to be mainly membranous, i.e., devoid of
cytoskeleton [55,56].

In addition to the studies of individual nanotubes, networks of tubes be-
tween membrane vesicles have also been built for biotechnological applica-
tions [57–61]. Fluid in such tubes can be transported via surface tension dif-
ference: Marangoni flow drives the membrane and hence the fluid inside the
connecting tubes towards vesicles of higher tension, while Poiseuille flow (in-
duced by Laplace pressure) occurs in the opposite direction [58,62]. For giant
vesicles the Marangoni flow dominates. When more than one tubes is pulled
from the same vesicle, then they tend to attract each other and coalesce [63].
Such coalescence has been observed experimentally [57, 61] and also used to
measure the elastic properties of membranes [64].
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7.2 Theory of Membrane Tubes

The basic question concerning membrane tubes is: why they form in the first
place. When a largely flat piece of membrane is grabbed at a point (by a bead,
motor protein, or a cytoskeletal filament) and pulled away, one would naturally
expect the formation of some cone-like object rather than a narrow tube. An
illustrative answer is that because membranes are usually under tension, they
try to reduce their surface. The minimum surface area configuration is reached
when the membrane is retracted to its original flat conformation and becomes
connected to the point of pulling by an infinitesimally narrow tether (having
practically zero surface area). As the membrane shrinks towards this tether,
however, its curvature increases. And because membranes do not favor large
curvatures, the bending rigidity will eventually prevent the membrane from
collapsing entirely into such an infinitesimally narrow tether. The result is a
narrow tube, the radius of which is set by the balance between the surface
tension and the bending rigidity.

7.2.1 Free Energy of Membranes

To calculate the radius of membrane tubes and also to study tube formation,
let us turn to the elastic theory of two-dimensional liquid bilayers. A general
theoretical framework has been developed for the last three decades [65, 66].
In the earliest description [67, 68], known as the spontaneous curvature (SC)
model, the membrane is treated as a thin sheet and locally characterized by
its mean curvature

H =
1
2

(
1

R1
+

1
R2

)
, (7.1)

where R1 and R2 are the two principal radii of curvature, as illustrated in
Fig. 7.3a. The energy of the membrane, the so-called Helfrich-Canham free
energy, is defined as

FH−C =
∫ [κ

2
(2H)2 − κ2HC0

]
dA , (7.2)

where κ denotes the bending rigidity of the membrane, C0 is the spontaneous
curvature (characterizing the asymmetry of the membrane if either the lipid
composition or the surrounding medium is different on the two sides), and
the integral goes over the entire surface of the membrane. The equilibrium
shape of the membrane can then be found by minimizing this free energy
while obeying system-specific constraints and boundary conditions.

In case of vesicles, e.g., the surface area A and the enclosed volume V
are often considered constants (A0 and V0, respectively). These constraints
can be taken into account by complementing the free energy with the terms
σA − pV , where σ and p are Lagrange multipliers. If, in addition to this, the
distance L between the two poles of the vesicle along the z direction are also
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Fig. 7.3. (a) Sketch of a piece of membrane, with the two principal radii of curvature
(R1 and R2) and the normal vector of the surface (n) indicated. (b) Either the
extensive variables (such as A, V , and L) or their intensive conjugate variables (σ,
p, and f) are kept fixed during the minimization of the free energy of the membrane

kept fixed (L0), then the term −fL should also be added to the free energy,
where f is again a Lagrange multiplier (for illustration see Fig. 7.3b). Thus,
the function to be minimized becomes:

F = FH−C + σA − pV − fL . (7.3)

The values of these Lagrange multipliers will have to be chosen such that
the corresponding constraints (A = A0, V = V0, and L = L0) be fulfilled.
Then the physical meaning of σ, p, and f will become the surface tension
of the membrane, the pressure difference between the inside and the outside
of the vesicle, and the pulling force at the poles, respectively. This can be
easily demonstrated through, e.g., the pulling force: at the minimum of F ,
any of its first derivatives must be zero, thus, for fixed values of A and V
the derivative ∂F/∂L = ∂FH−C/∂L− f (representing an infinitesimal length
change) is also zero, i.e., −f = −∂FH−C/∂L, which is indeed, by definition,
the force exerted by the membrane (or conversely, f is the external force
pulling on the membrane).

Here we note that a term proportional to the integral of the Gaussian
curvature (which is also quadratic in the curvature, because it is the product
of the two principal curvatures) could also be included in the Helfrich-Canham
free energy. But since such an integral is a topological invariant, it can be
ignored in the energy minimization for vesicles.

If the surface area of the membrane is not constant, either because it is in
contact with a lipid reservoir at a fixed chemical potential (as is often the case
for biological membranes [44]), or because we are interested in only a small
part of the vesicle (as in case of tube formation), then the constraint A = A0



148 I. Derényi et al.

is released, the rest of the world at the boundaries of the membrane can be
replaced by a surface tension σ and, thus, the term σA will become a real free
energy contribution. Similarly, if instead of volume and length constraints,
the conjugate variables (i.e., the pressure difference p and the pulling force f)
are controlled, then the −pV and −fL terms will also become real contribu-
tions to the free energy (for illustration see also Fig. 7.3b).

Since a membrane is a bilayer (consisting of two monolayers of lipids),
the description of a thin sheet is not always adequate. An additional term
needs to be incorporated that takes into account the coupling between the
two monolayers. When a bilayer is bent, the outer layer is stretched, while the
inner monolayer is compressed. This differential stretching is the essence of
the area difference elasticity (ADE) model [69], also known as the generalized
bilayer-couple model [70] and it contributes an additional term (quadratic
in the deviation of the area difference between the two layers ∆A from the
preferred value ∆A0) to the free energy. Although not all experimentally ob-
served shapes and shape transitions can be explained by this model, for most
cases the predicted behavior agrees well with the observations [71].

Since for short membrane tubes the free energy contribution of the differ-
ential stretching is much smaller than the other terms [72], we will omit it in
the rest of this chapter. Similarly, in case of nanotubes the pressure term is
also negligible [63,70,72,73], and will be omitted. Thus, for the description of
membrane tubes we will consider the following free energy:

F =
∫ [κ

2
(2H)2 − κ2HC0 + σ

]
dA − fL . (7.4)

7.2.2 Effects of Membrane Proteins and Lipid Composition

So far we have considered the membranes to be spatially homogeneous. While
this is indeed the case in most experiments with artificial vesicles, real biologi-
cal membranes are usually made up of various different kinds of lipids and they
also contain membrane proteins. If the different lipids and proteins have differ-
ent elastic properties (e.g., contribute differently to membrane rigidity) then,
as their distributions couple to the local membrane geometry, they can be-
come inhomogeneously distributed or even cause shape instabilities (budding,
pearling, fission, etc.) [74–80]. On top of this, the different molecular species,
due to the different interactions between them, can even phase separate into
distinct domains [81–83]. Such inhomogeneities and domain formations have
often been observed experimentally (for examples in relation to membrane
tubes see [35, 84–87]), and might be highly relevant in biological processes
(such as protein and lipid sorting, or vesiculation).

As the simplest case, let us consider a two-component membrane and
expand the free energy contribution of its local composition upto quadratic
order in the mean curvature of the membrane (2H) and the concentration Φ
of one of the two constituents:
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Fcomp =
∫ [

−λ2HΦ − µΦ +
χ

2
Φ2

]
dA , (7.5)

where λ is the coupling constant between the curvature and the concentration,
µ can be regarded as a chemical potential, and χ as a susceptibility coefficient
[74–76, 88]. The first experimental measurements of these parameters in case
of a transmembrane protein have been reported very recently in [89].

Now the total free energy, which is the sum of Eqs. (7.4) and (7.5), has
to be minimized with respect to both the geometry of the membrane and
the concentration distribution Φ. However, since only Fcomp depends on Φ,
and only in a quadratic fashion, it alone can be minimized very easily with
respect to Φ. The obtained minimum can then be added to Eq. (7.4) to get
the effective total free energy, which thus depends only on the membrane
geometry. It turns out that this effective free energy has the same functional
form as Eq. (7.4), in other words, the presence of a second molecular species
in the membrane simply rescales the elastic parameters of the membrane [90].
Therefore, in the following we will restrict ourself to the free energy as defined
in Eq. (7.4).

7.2.3 Formation of Membrane Tubes

The radius of a long tube can easily be derived from Eq. (7.4). For a cylinder
of radius R (yielding 2H = 1/R) and length L the free energy simplifies to:

F =
(

κ

2
1
R

− κC0 + σR

)
2πL − fL . (7.6)

Minimizing this with respect to R results in

R0 =
√

κ

2σ
(7.7)

for the tube radius. Plugging this back into Eq. (7.6), the free energy can be
written as

F = 2πκ

(
1

R0
− C0

)
L − fL . (7.8)

Since this function is linear in L, the tube force f0 (i.e., the force necessary
to hold the tube) can be calculated by taking this free energy equal to zero:

f0 = 2πκ

(
1

R0
− C0

)
. (7.9)

If a pulling force f larger than f0 is applied, then the free energy becomes
negative and the tube grows to infinity, whereas if f is smaller than f0, then
the free energy is positive and, therefore, the tube retracts.

Note, that the tube force f0 vanishes at C0 = 1/R0. For even larger spon-
taneous curvatures the tube force becomes negative, signaling that the mem-
brane is unstable, and tubes will grow spontaneously even without pulling.
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Interestingly, the tubes themselves will also become unstable against pearling
above this critical spontaneous curvatures [72,90,91], thus, the growing objects
will look like necklaces rather than tubes [86].

Although the calculation of the tube radius R0 and tube force f0 has been
an easy exercise, the initial formation of the tubes is a non-trivial process. For
C0 = 0 the force starts to increase linearly as the flat membrane gets deformed,
and then reaches a maximum (which is about 13% higher than f0) before it
converges to f0 with an exponentially damped oscillation [63, 70, 73, 92], see
Fig. 7.4. For larger C0, but still below 1/R0 (an illustration for C0 = 0.9/R0

can also be seen in Fig. 7.4) the oscillations of the force become much more
pronounced, pearls appear initially, and even the long and well developed
tubes get connected to the flat part of the membrane by extremely narrow
necks, which can be prone to fission [90]. Thus, the curvature sensitivity of
membrane proteins and the pulling of motor proteins together can easily lead
to vesiculation.

The shapes and forces just described and exhibited in Fig. 7.4 have been
calculated by numerically solving the so-called shape equations (for more de-
tails see [63]), which can be derived from the free energy of the membrane by
variational methods [93–96].

In most experiments with artificial vesicles the spontaneous curvature can
be considered zero. In this case the tube force simplifies to f0 = 2π

√
2σκ. This

theoretical prediction has been verified experimentally [41,45,97,98], and also
used for determining the bending rigidity κ of membranes.

For biological membranes the value of κ is usually in the 10−20 − 10−19 J
range and the surface tension σ varies between 10−3 and 10−6 N/m [65].
Choosing some typical values (κ ≈ 4 × 10−20 J and σ ≈ 5 × 10−5 N/m)
and ignoring the spontaneous curvature one finds that R0 ≈ 20 nm and f0 ≈
12.6 pN. Thus, in agreement with the multitude of experimental observations,
membrane nanotubes are indeed a few tens of nanometers wide, and can be
formed by forces around ten piconewtons, which can be easily generated by
either the pushing of polymerizing filaments or the pulling of a couple of motor
proteins.

Because at the tip of the tubes the mean curvature (and thus the free
energy density) of the membrane diverges [63,92,99], for biological systems it
seems reasonable to protect the tips and distribute the pulling forces at larger
areas (e.g., by utilizing cap proteins or lipid rafts). Recent in vitro experiments
have demonstrated that if the pulling area greatly exceeds the tube radius,
then a significant force barrier has to be overcome during tube formation,
which depends linearly on the radius of the pulling area [46, 48, 100]. This
observation is in good agreement with theoretical predictions [48].
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Fig. 7.4. Force vs. length curves for the formation of a membrane tube pulled out
of a flat membrane that spans a ring of radius 20R0 for two different values of the
spontaneous curvature (C0 = 0 and C0 = 0.9/R0). The shape of the emerging tube
is also depicted at certain stages

7.3 Membrane Tube Formation
by Cytoskeletal Motor Proteins

The properties of individual motor proteins are being unraveled at a rapid
pace. Much less is known about how and whether multiple motors coop-
erate, interact, and coordinate their activities. Although individual motors
could in principle move objects (such as vesicles, DNA, proteins, membrane
tubes, etc.), in vivo they often function together in groups. Many organelles
are observed to move over larger distances than one motor can move [101],
suggesting that multiple motors are working together. Cooperative func-
tioning is also thought to be important for the spatial distribution and
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morphology of organelles: multiple motors of opposite directionality are
present on organelles [102, 103], and it is yet unclear how their interaction is
orchestrated [104,105]. Here, we will discuss recent in vitro studies that shed
some light on how motor proteins cooperate to generate enough force to form
and maintain membrane tubes. Next, we will discuss some promising future
studies to tackle the problem of oppositely directed motors, and we will give
some first results.

7.3.1 In vitro Studies Demonstrate that Molecular Motors
Cooperatively Pull Membrane Tubes

Recent in vitro experiments with purified motors and synthetic vesicles have
shed some light on the cooperative activity of motor proteins. When puri-
fied motors were linked to beads, which were subsequently attached to a giant
unilamellar vesicle (GUV), and then these bead-motor-complex coated vesicles
were brought into contact with a network of MTs, the formation of membrane
tubes was observed (see Fig. 7.5a [49]). The fact that the force required to
form a tube is usually higher than what a single motor protein can exert sug-
gests that each bead was pulled by several motors simultaneously. In contrast,
in other experiments with no beads (see Fig. 7.5b [51,106]), it was found that
motors do not need to be cross-linked into multi-motor complexes for tube
formation. It was demonstrated that the extent of tube formation depends
on the concentration of motor proteins on the vesicle and the force that is
required to form a tube (set by global parameters like the membrane tension
and the bending rigidity). This led to the proposed mechanism of dynamic
association of motor proteins [51]: a steady-state cluster of motor proteins is
dynamically maintained at the tip of a membrane tube, taking into account
a force dependent departure rate of motor proteins [107, 108] and a concen-
tration dependent arrival rate into the cluster. By simultaneously fluorescent
and biotin labeling of lipids, Leduc and Campàs et al. [50] succeeded in the
experimental demonstration of clusters at the tip of a tube. Their accompa-
nying theoretical description, which takes into account on and off rates of
motors and the active flux of motors along the tube as well, allowed for the
quantitative determination of parameters like the motor binding rate and the
minimal number of motors required for the extraction of a tube.

All the above-mentioned in vitro experiments were conducted with a bi-
otinylated kinesin motor [109], which is a processive dimer. To determine
whether tube formation by dynamic clusters of motor proteins is a robust
and general mechanism, we recently studied the tube-formation potential of a
biotinylated ncd motor. This motor was attached to GUVs, and interestingly,
after getting into contact with a network of MTs, the first results indicate that
ncd motors are also able to pull membrane tubes [110]. This process seems to
occur in a similar manner as tube formation by kinesin. Some differences are
that tube formation occurs at a low velocity (in agreement with the veloc-
ity of ncd-mediated bead movement [10]) and a higher concentration of ncd
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Fig. 7.5. Sketches of the in vitro experiments, where membrane nanotubes are
formed by biotinylated motor proteins that pull on biotinylated lipids either (a)
indirectly with the help of streptavidin coated vesicles or (b) directly through indi-
vidual streptavidin molecules

is required for the same tube-formation potential as kinesin. As individual
ncd motors are not processive, this result reveals an interesting cooperativity-
effect: even if individual motors are non-processive, their joined activity can
result in long-distance (processive) movement and drive tube formation and
extension under an opposing load.

Interestingly, a recent finding indicates that the binding of motors is en-
hanced close to where other motors are bound [111]. This could stimulate the
(dynamic) formation and stabilization of clusters of motors, which in turn
would facilitate long distance movement and tube formation.

7.3.2 Interaction between Clusters of Antagonistic Motors?

There is substantial evidence that oppositely directed (antagonistic) motors
are simultaneously attached to membrane organelles in the cell. This leads to
bi-directional movement of organelles [102–105], and the morphology of mem-
brane structures may also be dependent on such antagonistic motors [102].
In addition to a sufficiently high force, for membrane tube formation another
requirement is that a sufficiently high counterforce is exerted on a membrane
vesicle, as in the absence of a counterforce the vesicle would be dragged along.
This counterforce may be generated by static linkers that immobilize a mem-
brane vesicle, or can be developed by motors that exert force in the opposite
direction.

To study the interaction between antagonistic clusters of motors, (plus-
end directed) kinesin and (minus-end directed) ncd were simultaneously at-
tached to the same vesicle. These motor-coated vesicles were brought into
contact with a diluted concentration of immobilized MTs (in order to have
only one MT as an interaction partner). Subsequently, a vesicle was grabbed
with optical tweezers, and placed on top of the MT. In Fig. 7.6 we present a
first result of such an experiment. After placing the vesicle on top of a MT,
it started moving. This movement continued for several tens of micrometers,
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Fig. 7.6. VE-DIC microscopy of a membrane tube formed from a vesicle coated with
kinesin and ncd. Microtubules are hardly visible. The mark X indicates a reference
point on the surface of the coverglass. Time is in minutes and seconds. The bar is
10 µm

after which it stopped, while (at the same time) a membrane tube was formed
and extended along the MT at about 0.4 micron/second.

Clearly more experiments are required, but one intriguing interpretation
of this result is the following: first, the vesicle is moved along a MT by a
cluster of motors (presumably kinesin, since it moves at ∼0.4 µm/s), Next, a
cluster of ncd motors is nucleated at the trailing end of the vesicle, supplying
sufficient counterforce to stop the movement of the vesicle by kinesin. Finally,
as the cluster of kinesin motors can generate a high enough force the tug-of-
war results in the formation of a tube.

An interesting point here is that naively one would expect two tubes to be
formed, since motors are pulling in two opposing directions. It is, however, not
energetically favorable to form two tubes, since in this case two neck regions
with a high curvature need to be created [70], making it more favorable to
extend an already existing tube. Also, the force (energy) barrier required to
form a tube is larger than the force required to extend an existing tube [63,73],
depending on the size of the area on which the force is exerted [48]. Thus, two
tubes will only be formed if the vesicle is held at its position by an additional
force.

Our preliminary data suggest that the competition between antagonistic
clusters of motor proteins can lead to membrane tube formation. This tube
formation is an additional degree of freedom, and it would prevent a tug-of-
war in which case neither group of motors can move. Interestingly, the tubes
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effectively function as a sorting tool, since only motor proteins that move
in one direction will move into and be enriched on a tube. If the tube were
subsequently pinched off from the main vesicle body, the plus- and minus-end
directed motors and their attached cargo would be segregated.

One important note is that, in the experiments where just kinesin is present
on the vesicles and tubes are formed, kinesin motors supply the counterforce
that holds the GUV by moving in all directions on the high-density network
of randomly oriented MTs. It cannot be excluded that the interaction of the
vesicle with the surface, or the presence of rigor motors may also play a role
in the immobilization of the vesicle. In order to have interpretable experi-
ments, in the antagonistic motor assay, the density of MTs on the surface
was diluted to prevent the interaction of motor-coated vesicles with multiple
MTs. However, this method does not prevent the interaction of the vesicle
with the coverslip’s surface. For a proper study of the interactions between
antagonistic motor proteins, it will be important to immobilize the MTs, and
at the same time prevent the vesicles from adhering. This is a big challenge
since the underlying reason that MTs attach to a surface (charge), also makes
the vesicles attach. A possible work-around for this issue is to use vesicles
of a different charge. Alternatively, an elegant method may be to construct
3D structures like pillars [112] where MTs reach from one side to the other,
and the middle part is not in contact with any surface. Vesicles can then be
brought into contact with the elevated MT using the tweezers.

A subject connected with the antagonistic motors is the bi-directional
movement of organelles that is observed in cells. When oppositely directed
motors are present on a smaller vesicle, instead of tube formation their ac-
tivity may lead to bi-directional movement (as tube formation from smaller
vesicles will require a higher force because there is less excess surface area).
Generally it is suggested that “coordination machinery” exists that controls
whether one kind of motor or the other is active [104, 105], however, the
physical interaction of antagonistic clusters of motors (transmitted through
the vesicle) might play a role as well. One can imagine that at low motor
concentrations, stochastic fluctuations in the number of motors may lead to
alternating stable clusters of plus-end or minus-end directed motors, in turn
leading to bi-directional movement. In that case the dynamical transition of
collections of motors would act as number fluctuation amplifier [113–115].
The details of such “metastable” bi-directionality should depend on the rate
of arrival into and the rate of departure from a cluster of motors [51, 110]. A
further discussion of this bi-directionality is outside the scope of this work,
but experiments are on the way to determine this system in more detail, and
establish the regulatory role of physical parameters on antagonistic clusters
of motors.

It is now well established that force-generating motor proteins are sufficient
and enough for membrane tube formation. Resolving how (physical) parame-
ters may regulate the dynamic interplay between motors and membranes is a
promising line of research.
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