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The behavior of lipid vesicles near solid surfaces, despite its scientific and technological significance, is
poorly understood. By simultaneously taking into account (i) the dynamics of spontaneous pore opening and
closing in surface bound vesicles; (ii) their volume loss via leakage through the pores; (iii) and the propagation
of their contact line, we have developed a simple model that can fully describe the detailed mechanism of and
provide the necessary conditions for the rupture of vesicles and the subsequent formation of supported lipid
bilayers. The predictions of the model are in good agreement with most of the experimental observations.

PACS numbers: 87.16.D-, 87.10.-e, 87.85.J-, 68.15.+e

Biological membranes play key roles in living cells by sep-
arating the cell and its organelles from their surrounding me-
dia. Supported lipid bilayers (SLBs), i.e., single lipid bilay-
ers anchored to a solid substrate, are frequently used models
of biological membranes (both for investigating membrane
processes and for biotechnological applications). The most
common method of producing SLBs is the spontaneous self-
assembly of a continuous bilayer along a solid surface from
unilamellar vesicles depositing from solution. Despite the
widespread use of SLBs, the mechanism of their formation
is still a matter of debate, surrounded by controversial exper-
imental data, mainly due to the sever limitations in observ-
ing the fast microscopic events of the adsorption and rupture
of individual vesicles. Ensemble techniques, such as quartz
crystal microbalance (QCM) [1] or surface plasmon resonance
(SPR) [2], indicated that vesicle rupture and SLB formation
occur only after a critical vesicle coverage has been reached
on the surface. Microscopic techniques, such as fluorescence
microscopy (FM) [3], atomic force microscopy (AFM) [4],
and cryotransmission electron microscopy (cryo-EM) [5], on
the other hand, revealed the occurrence of isolated ruptures of
individual vesicles. The FM studies showed that the fraction
of ruptured vesicles prior to SLB formation can be as high as
50%. Combined QCM and AFM studies [6] uncovered some
discrepancies between the results of these two methods, ques-
tioning the reliability of the ensemble techniques. Recent FM
studies by Weirich et al. [7] argued against the existence of
a critical vesicle density necessary for rupture. Their results
suggest that small bilayer patches appear after the rupture of
isolated vesicles, and then these patches grow by accelerat-
ing both the accumulation and rupture of vesicles at the patch
edges. This study reconciles the apparent conflict between the
existence of isolated ruptures and the observed critical vesicle
coverage for SLB formation, articulating that critical cover-
age is needed only for efficient bilayer growth (and not vesi-
cle rupture) while nucleation seeds are generated by isolated
vesicle ruptures.

Most recently, Andrecka et al. [8] used interferometric scat-
tering microscopy (iSCAT), which allowed them to visual-
ize SLB formation from vesicles at an unprecedented spa-
tial and temporal resolution. They also observed vesicle ad-
sorption, rupture, movement, and a wave-like spreading of bi-
layer patches. They found that the rate of spontaneous vesicle
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FIG. 1. Schematic picture of a surface bound cap-shaped vesicle in
the limit of strong adhesion, with a pore at the top.

rupture decreases with vesicle size (in agreement with earlier
AFM measurements [4]), and that the close proximity of vesi-
cles does not catalyze spontaneous vesicle rupture, nor does
it result in vesicle fusion. The observed wave-like spread-
ing suggests that wave formation is initiated by the sponta-
neous rupture of individual seed vesicles, and the major role
of the critical coverage is to ensure efficient bilayer propa-
gation via inducing vesicle rupture at the bilayer edges. By
varying the interaction potential between the vesicles and the
substrate they noticed that stronger interaction leads to faster
vesicle rupture. This is consistent with the often observed
behavior that while on certain substrates (such as glass and
mica) vesicle adsorption is followed by SLB formation, on
other substrates (e.g. TiO2, oxidized Pt, oxidized Au) vesi-
cles adsorb but remain intact [1]. Similarly, varying the inter-
action strength by using charged lipids can lead to either no
absorption, or the formation of a stable vesicular layer, or the
decomposition of adsorbed vesicles into SLB [9].

The above experimental results suggest that the key step in
SLB formation is the rupture of individual vesicles. This is,
however, a complex process involving membrane pore forma-
tion, membrane dynamics, as well as hydrodynamics, which
have never been integrated into a single self-consistent theo-
retical description. Our goal here is to understand the rupture
process of individual vesicles by constructing a simple coarse-
grained model that simultaneously takes into account the dy-
namics of spontaneous pore opening and closing along the
membrane; the volume loss of the vesicle via leakage through
the pores; and the propagation of the contact line. Such a
model can be highly beneficial in interpreting experimental
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data and planning new experiments. The numerical simula-
tions of our model, complemented with analytic estimations,
reveal the details of the rupture process. We show, e.g., that
under some conditions several transient pores can open be-
fore the vesicle reaches its final state (either an SLB patch or
a partially flattened vesicle). Our results are in good qualita-
tive agreement with most of the available experimental data
(of Andrecka et al. [8], in particular), justifying the legitimacy
of the model. We demonstrate, e.g., that the larger the vesicle
the more easily it ruptures and forms a bilayer. We also show
that the rupture of vesicles can be very sensitive to their ini-
tial geometry (i.e., relative volume), which might explain why
only a fraction of vesicles rupture immediately upon adsorp-
tion [3].

When a vesicle gets in contact with a flat hydrophilic sur-
face it takes a cap-like shape [Fig. 1] to maximize its contact
area with the surface [10, 11]. For strong adhesion (which is
a prerequisite of rupture, as will be described later) the radius
of curvature of the membrane at the contact line is very small
(a few tens of nm). From now on we will consider vesicles
that are significantly larger than this radius of curvature, thus,
their shape can be well approximated by a perfect spherical
cap. The surface tension of the membrane (σ) in thermal equi-
librium is given by the Young-Dupre equation [12], which is
the condition of force balance:

σ =
W

1 + cosϕ
= W

A‖ − πR2

2πR2
≈W A0 − πR2

2πR2
, (1)

where W is the adhesion energy between the membrane and
the surface per unit area (W > 0 for attractive interaction); ϕ
is the contact angle;R is the radius of the contact area; andA‖
is the projected area of the vesicle (i.e., the area of its shape
after averaging out the thermally induced membrane undula-
tions), which is smaller than the total area of the membrane
(A0), but usually by only less than a few percent [12].

When a membrane pore forms (as a result of large surface
tension), the surface tension drops down, allowing the contact
line to propagate and to open the pore even further. At the
same time, the vesicle loses volume via leakage through the
pore, facilitating the resealing of the pore. These two com-
peting effects lead to a non-trivial dynamics of the vesicles.
Pore opening and closing were studied both experimentally
[13] and theoretically [14] for a fixed contact area. Pore open-
ing has an energy cost, because a free bilayer edge appears at
its circumference. The line tension (λ) of the edge was de-
duced for various types of lipids from the pore dynamics of
surface bound [15] and micropipette-aspirated [16] vesicles.
It is typically of the order of 10 pN.

The propagation of the contact line was also observed ex-
perimentally [2, 5, 17]. It was studied at different lipid compo-
sitions [18] and in the presence of inhomogeneous, rough, or
chemically structured surfaces [19, 20]. Contact line propaga-
tion was also taken into account in the coarse-grained Monte
Carlo simulations of the surface kinetics of vesicles [21, 22].

Pore opening is an activated process [23], and can occur
anywhere along the membrane. It will, however, be neglected
at the contact area, where it is accompanied by the loss of
adhesion energy. The energy of a pore of radius r can be writ-

ten as [23, 24] E = 2πrλ − πr2σ, where the first term is
the energy contribution of the free edge, and the second term
accounts for the energy gain due to the shrinkage of the mem-
brane under surface tension σ. This energy function provides
a parabolic barrier at radius r∗ = λ/σ with an activation en-
ergy of E∗ = πλ2/σ. Pore opening can thus be considered to
occur at a rate of

k = k0
Ac

a2
exp

(
−πλ

2/σ

kBT

)
, (2)

where kB is the Boltzmann constant, T ≈ 300 K is the ab-
solute temperature, Ac = A0 − πR2 is the non-adhering sur-
face area of the cap-shaped vesicle, a2 is the surface area of
a lipid molecule with linear size a ≈ 0.8 nm [11], and k0
is the local attempt rate of pore nucleation. We estimate it
to be of the order of k0 ≈ 108 1/s, which is consistent with
the ns time scale of molecular diffusion at nm distances, and
also with the molecular dynamics simulations of the forma-
tion and disappearance of a single file of water across a lipid
bilayer [25]. Its exact value and even its exact order of mag-
nitude are largely irrelevant, because pore opening becomes
experimentally observable when the surface tension σ reaches
the 10−3 N/m range, where the activation energy drops below
40 kBT (about 100 kJ/mol), and thus an order of magnitude
offset in k0 can be compensated by only a 6% change in σ
(about 2.3 kBT change in the activation energy). Our estima-
tion that the activation energy of pore opening has to drop be-
low 100 kJ/mol for vesicle rupture to occur in the experimen-
tal time scale is in agreement with the reported 70± 8 kJ/mol
[1] and 42 ± 4 kJ/mol [22] values for the activation energy
of SLB formation. In our simulations whenever a pore opens
(in a stochastic manner, at a rate of k) we set its radius a lit-
tle larger than r∗. As pore formation is accompanied by the
reduction of the surface tension, formation of a second pore
is an unlikely event, therefore, we never allow more than one
pore to be present at the same time.

We model the vesicle to always have a homogeneous sur-
face tension σ along its entire surface (see the explanation
later), and to always assume a cap shape (with cap radius Rc,
cap height Hc, contact angle ϕ, and radius of contact area R),
which together also ensure a homogeneous Laplace pressure
of 2σ/Rc inside the vesicle.

When a pore is present in the membrane (which can be any-
where along the non-adhering part of the cap, as long as it
does not touch the contact line) the volume of the vesicle V
changes as [13, 14, 26]

V̇ = −2

3

r3σ

Rcη0
(3)

due to leakage driven by the internal Laplace pressure, where
η0 ≈ 10−3 Pa s denotes the viscosity of the aqueous medium.

The radius of the pore is governed by [13, 14]

ṙ =
σr − λ
2ηmd

, (4)

where d ≈ 5 nm is the thickness of the bilayer [11], and ηm =
0.2 Pa s is the viscosity of the membrane [24]. This equation
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is valid as long as r � Rc, which usually holds until the final
stages of vesicle rupture. Pore closure occurs when the pore
radius becomes zero.

The contact radius, irrespective of the presence of a mem-
brane pore, propagates towards the Young-Dupre equilibrium
at a rate

Ṙ =
W − (1 + cosϕ)σ

η0cs
, (5)

where the surface drag coefficient cs has several different
components. Hydrodynamic friction of the aqueous medium
has a contribution of the order of unity. Dimensional analysis
suggests that the relative sliding between the two membrane
layers (due to the smaller area of the inner layer) provides a
more significant contribution of the order of ηm/η0 ≈ 200,
when the membrane is considered to be an isotropic viscous
fluid, or bd/η0 ≈ 100, when the intermonolayer friction co-
efficient is taken as b ≈ 2 × 107 Pa s/m [27]. More detailed
geometrical considerations provide an additional (π − ϕ) co-
factor at the contact line. Briefly, the reason for this cofactor
is that each surface element at the highly curved cylindrical
region of the contact line (characterized by a local radius of
curvature Rcurv, and inclination angle ϕ∗ with respect to the
solid support) contributes to the drag force per unit length of
the contact line by Ṙηm∆ϕ∗, obtained as the product of the
velocity gradient across the membrane Ṙ/Rcurv, the mem-
brane viscosity ηm, and the azimuthal arc length of the sur-
face element Rcurv∆ϕ∗. The integral of ϕ∗ from ϕ to π gives
the cofactor (π − ϕ). Similarly, an additional 2ϕ cofactor
(for which the derivation is not detailed here) is provided by
the non-adhering spherical cap region of the vesicle. These
two cofactors together result in cs ≈ 1000. Surface inhomo-
geneities and impurities can further increase the drag coeffi-
cient by many orders of magnitude. Therefore, in our simula-
tions we explored a very broad range of cs (see below).

The variables V , r, and R completely determine the ge-
ometry of the cap-shaped vesicle. The height of the cap
Hc can be calculated from V = π(3R2Hc + H3

c )/6; the
contact angle ϕ from cosϕ = (Rc − Hc)/Rc; the cap ra-
dius is Rc = (R2 + H2

c )/(2Hc); the projected area of the
non-adhering part of the vesicle is Ac‖ = 2πRcHc − πr2;
whereas the total area of the non-adhering part (if the undula-
tions along the strongly adhering contact area are neglected)
is Ac = A0 − πR2.

The three dynamical equations and the activated stochas-
tic process of pore opening are coupled to each other by the
surface tension of the membrane [28]:

σ =
π2κ

a2
exp

(
− 8πκ

kBT
α

)
, (6)

where κ ≈ 10−19 J is the bending rigidity of the bilayer [29],
and α = (Ac − Ac‖)/Ac‖ denotes the strain of the mem-
brane (the proportion of the surface area stored in the undula-
tions). The apparent area expansion modulus can be expressed
as K = |dσ/dα| = σ8πκ/(kBT ). For simplicity the elastic
(Hookean) expansion of the bilayer is omitted, because it is
negligible for small surface tensions and becomes compara-
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FIG. 2. Two examples of the time evolution of the three main
geometrical variables (V , r, and R) for an initially spherical vesi-
cle of size R0 = 280 nm. System parameters are λ = 10 pN,
W = 10−3 N/m, cs = 6× 103 (top), cs = 3× 105 (bottom).

ble to the undulation driven expansion only at tensions rel-
evant for pore opening [29]. The equilibration time of the
surface tension can be estimated by dimensional analysis as
τσ = η0R0/K = η0R0kBT/(σ8πκ), where the equivalent
sphere radius R0 is defined by A0 = 4πR2

0. τσ is smaller
than any other relevant time scale of the dynamics, includ-
ing the fastest time scale of pore closing: τr = 2ηmdr

∗/λ =
2ηmd/σ. The ratio τσ/τr = (η0/ηm)(R0/d)kBT/(16πκ) is
smaller than unity as long as the size of the vesicle (R0) is
smaller than about 1 mm, which holds in most experimental
situations. Thus, the surface tension can indeed be considered
homogeneous along the membrane.

Using adaptive time steps we numerically simulated the
model until either rupture (complete SLB formation) occurred
or the time reached the observation time τobs = 105 s for
two vesicle sizes (surface areas A0 = 100 and 1 µm2, or
equivalent sphere radii R0 = 2.8 µm and R0 = 280 nm)
and three line tensions (λ = 20, 10, and 5 pN). In each time
step of the simulations the three main geometrical variables
(V , r, and R) were updated according to the three dynamical
equations, and if no pore was present in the membrane, pore
opening was allowed to occur randomly at a rate k. The inter-
action potential was varied from weak (W = 10−5 N/m) to
strong (W = 10−2 N/m) adhesion, and the surface drag coef-
ficient from the (physically unattainable) hydrodynamic limit
(cs ≈ 1), through the membrane friction dominated range
(cs ≈ 103), up to very large, surface inhomogeneity governed
values (cs ≈ 106).

First, we investigated the dynamics of initially almost
spherical vesicles (with a small contact radius of Rinit =
10 nm). Two qualitatively different examples of the time evo-
lution of the three main geometrical variables (V , r, and R)
can be seen in Fig. 2. The average rupture time 〈τrup〉 and the
average number of pores opened 〈Npore〉 are shown in Figs. 3
and 4, respectively.

The most salient feature of the 〈τrup〉 data is that there is
a sharp transition between fast rupture (〈τrup〉 < 1 s) and no
observable rupture at all. Larger values of λ, as expected from
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FIG. 3. The average time (based on 30 runs) needed for complete
vesicle rupture (i.e., SLB formation) 〈τrup〉 as a function of W and
cs, for two vesicle sizes: R0 = 280 nm (top row), R0 = 2.8 µm
(bottom row); and three line tensions: λ = 20 pN (left column),
λ = 10 pN (middle column), λ = 5 pN (right column). The data
values are indicated by both color codes and contour lines (see the
scales at the top right corner). The raggedness of the contour lines is
an artifact of the discretization of the control parameters (W and cs).
W therm

crit , W pore
crit , and Wmin(1ms) are also plotted as gray dashed

line, black dashed-dotted line, and black dotted line, respectively.

its role in the activation energy of pore opening, make the rup-
ture more difficult. The rupture process also has a noticeable
size dependence. Thermodynamics dictates that rupture can
occur only if the energy gain (4πR2

0W ) due to adhesion is
larger than the energy cost (4πR0λ) of the free edge of the
final bilayer patch of radius 2R0 [11], i.e., if W is larger than
the critical value

W therm
crit = λ/R0 , (7)

which indeed depends reciprocally on the vesicle size (drawn
as a gray dashed line, whenever it falls into the depicted pa-
rameter range).

Observable rupture, however, often occurs for significantly
lager values ofW than what the thermodynamic criterion sug-
gests. This phenomenon can be understood from the pore
opening kinetics. For a pore to open during the observation
time τobs the surface tension has to exceed the value (see
Eq. (2))

σcrit =
πλ2

kBT ln(τobsk0A0/a2)
. (8)

For the small initial contact radius, the surface tension is much
larger than this threshold value (see Eq. (1)), so the first pore
opens rapidly. But if the pore reseals after the contact line has
propagated, the surface tension can drop below the threshold.
The worst case scenario is when the vesicle is almost flat (ϕ ≈
0) and σ ≈ W/2. Pore opening for arbitrary geometry is,
therefore, ensured only if W is larger than

W pore
crit = 2σcrit , (9)
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FIG. 4. The average number of pores opened 〈Npore〉 (until either
rupture or time 105 s) for the same parameters as in Fig. 3.

illustrated as a black dashed-dotted line. Vesicle rupture for
W therm

crit < W < W pore
crit is, thus, not guaranteed, and depends

on several factors, such as cs or the initial geometry.
The initial geometry has indeed a dramatic effect on the

vesicle’s fate [Fig. 5]. Rupture cannot be observed if the initial
surface tension, given by the Young-Dupre Eq. (1), is below
σcrit, i.e., if W is smaller than

W init
crit = σcrit

2πRinit2

A0 − πRinit2
, (10)

drawn as a gray dashed-dotted line.
Several contour lines in Figs. 3 and 4 run diagonally. The

reason is that when a pore opens, the surface tension drops
down, and the contact line propagates according to Eq. (5).
Thus, a minimally necessary value of the adhesion energy to
allow rupture within τrup can be determined by replacing Ṙ
with 2R0/τrup and setting σ = 0 in Eq. (5):

Wmin(τrup) = 2R0η0cs/τrup , (11)

which runs diagonally in the W − cs parameter space. To
guide the eye Wmin(1ms) is plotted as a black dotted line.
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FIG. 5. The average rupture time for three initial geometries:
Rinit = 0.33R0 (left), Rinit = R0 (middle), Rinit =

√
2R0 (cor-

responding to zero initial volume, right), for R0 = 2.8 µm and
λ = 10 pN. Colors and lines are as in Fig. 3. W init

crit is also drawn as
a gray dashed-dotted line.
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To sum up, vesicle rupture is guaranteed if W > W pore
crit .

It occurs rapidly for W >∼ Wmin(1ms), and slowly, often ac-
companied by the appearance of several transient pores, other-
wise. In the rangeW therm

crit < W < W pore
crit the rupture process

is highly sensitive to the initial geometry. Since the spherical
shape is the most advantageous, we predict that vesicle fu-
sion (leading to less spherical vesicles, e.g., Rinit ≈ 1.2R0

after the fusion of two identical spheres) cannot help SLB
formation. This is consistent with the experiments by An-
drecka et al. [8], who never observed any fusion events. Also,
an osmotic shock that makes the surface bound vesicles more
spherical is expected to facilitate SLB formation, as observed
experimentally [3, 30]. The strong dependence of the vesicles’
fate on their initial geometry also explains why some vesicles
rupture immediately upon absorption, while others do not [3].

Note that we have not taken into account the fact that pore
formation is more favorable near the contact line. Here the
energy gain per unit area of the pore is larger than σ byW due
to the high curvature of the membrane [12], which lowers the
activation energy by a factor of σ/(σ + W ). This correction,
however, is significant only when W is comparable to σcrit,
so it facilitates vesicle rupture only when rupture is already
guaranteed and, therefore, it has little effect on the results.

In conclusion, by combining the elastic theories of mem-
branes, hydrodynamics, and the activated process of pore
opening, we have developed a simple model of the dynamics
(including the complete rupture) of lipid vesicles near solid
surfaces. The model involves three ordinary differential equa-
tions (3-5) and a stochastic rate process [with a rate given by

Eq. (2)], which are coupled to each other through the depen-
dence of the surface tension on the geometry of the vesicle
[as described by Eq. (6)]. The model relies on two basic but
plausible assumptions (homogeneous surface tension, spheri-
cal cap shape), and a few simplifications (geometry indepen-
dent drag coefficient, pore formation only at the non-adhering
part of the membrane, undulations neglected at the contact
area, omission of the elastic expansion of the membrane). Al-
though the simplifications are expected to have little effect on
the results, they are not inherent part of the model, and can
be relaxed at will. The model provides the first detailed de-
scription of the dynamics of surface adhered lipid vesicles. Its
predictions are consistent with most of the experimental ob-
servations (including the dependence of the rupture time on
the size and initial geometry of the vesicle and also on the
material properties of the solid support). The model also pre-
dicts some experimentally inaccessible behavior (such as the
opening of transient pores), but most importantly, it provides a
tool for determining under what conditions vesicle rupture and
SLB formation is expected to occur. While the analytically
determined criteria [from Eq. (7) to (11)] can serve as guide-
lines, in the experimentally relevant parameter range, where
the cross-over between slow and rapid rupture takes place, the
simulations of the model are indispensable.
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