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Physics, Eötvös University, Pázmány P. stny. 1A, H-1117 Budapest, Hungary

Biological macromolecules experience two seemingly very different types of noise acting on different time
scales: i) point mutations corresponding to changes in molecular sequence and ii) thermal fluctuations. Exam-
ining the secondary structures of a large number of microRNA precursor sequences and model lattice proteins,
we show that the effects of single point mutations are statistically indistinguishable from those of an increase in
temperature by a few tens of Kelvins. The existence of such an effective mutational temperature establishes a
quantitative connection between robustness to genetic (mutational) and environmental (thermal) perturbations.

Biological systems are robust [1], and robustness is consid-
ered to be a fundamental feature of complex evolvable sys-
tems [2]. Molecular phenotypes, such as stable protein folds
and functional RNA structures, have provided fundamental in-
sight into the origin and principles of robustness in biological
systems [5–12]. In these systems perturbations on different
time scales, i.e., rare changes in sequence and omnipresent
thermal fluctuations, seem very different. Surprisingly, sev-
eral computational [13–16] and experimental [17–21] studies
suggest a qualitative similarity between the effects of muta-
tions and temperature. Stable proteins are in general more tol-
erant to point mutations [14, 17], and in the case of RNA, the
set of structures explored by thermal fluctuations are highly
correlated with the minimum free energy structures of single
point mutants[13, 16].

The correlation between the effects of point mutations and
temperature is less surprising if we recognize that each degree
of freedom of the molecule has an average thermal energy of
kBT/2 ≈ 2.5/2 kJ/mol (where kB is the Boltzmann constant
and T ≈ 300 K is the absolute temperature) and the typical
free energy change associated with a point mutation is also
of the order of a kBT (approximately 4 kJ/mol for a protein
[22], and about twice this large for the breaking of a hydrogen
bond in a nucleotide base pair). Despite this similarity in ener-
gies, for single instances of the system, i.e., individual copies
of protein or RNA molecules, permanent changes in sequence
are clearly different from ephemeral thermal kicks. However,
the distinction between mutational effects and thermal fluc-
tuations becomes less manifest in large populations and over
longer time scales where many possible point mutations are
explored as molecules are copied (transcribed and translated)
repeatedly via mechanisms prone to errors. From this per-
spective, perturbations of the phenotype (e.g., the protein fold
or RNA secondary structure) resulting from mutations can be
expected to have similar effects to thermal perturbations: both
jostle the system between states with energies that differ by
only a few times the thermal energy scale.

Here we demonstrate that this qualitative analogy between
mutational and thermal perturbations can be taken to a quanti-
tative level, and the effect of point mutations is well described
as an effective increase in temperature. For the original, so
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called wild type (WT), sequence let the probability of the sys-
tem being in any of its possible states (e.g., protein folds or
RNA secondary structures) be denoted by

PWT(i, T ) =
1

ZWT(T )
exp

(
−GWT(i, T )

kBT

)
, (1)

where GWT(i, T ) is the free energy of state i and ZWT(T ) is
the partition function, and let the probability of the same state
transformed to an effective temperature Teff be defined as

Peff(i, T, Teff) =
1

Zeff(T, Teff)
exp

(
−GWT(i, T )

kBTeff

)
, (2)

with normalization constantZeff(T, Teff). Note that this trans-
formation preserves the relative contributions of the enthalpic
and entropic components of the free energy at the original
temperature T . The mutation averaged probability of the sys-
tem in state i can be defined as

Pmut(i, T ) =
1

Nmut

Nmut∑
m=1

pm(i, T ) , (3)

where the summation index m runs over all possible point
mutations (of total number Nmut) and pm(i, T ) denotes the
probability of state i for mutation m.

Examining the secondary structures of a large number of
microRNA (miRNA) precursor sequences and model lattice
proteins, we demonstrate that in most cases there exists a
well defined effective temperature T ∗eff , for which the trans-
formed probability distribution of the wild type approximates
the average probability distribution of single point mutants
with unanticipated precision:

Pmut(i, T ) ≈ Peff(i, T, T
∗
eff) . (4)

In other words, we show that the effect of mutations are fully
described by considering only the free energies GWT(i, T ) of
the secondary structures i of the single wild type sequence and
a single effective temperature T ∗eff .

We used the 23766 miRNA precursor sequences of
miRBase version 9.0 [23] upto the length of 250 nucleotides.
For each of these WT sequences we (i) generated all of its
single point mutants, and then (ii) determined the equilibrium
probability distributions (at T = 300 K) of the secondary
structures of the WT and the mutant sequences, by using the
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FIG. 1. The effects of single point mutations and an increased
effective temperature. For a typical miRNA and lattice protein the
structures were grouped into 20 bins in such a way that each bin ac-
commodated exactly 1/20th of the WT equilibrium probability dis-
tribution (blue bars). The number of structures for each bin is shown
in the bottom panels. For the miRNA sequence smaller green squares
show the result of sampling additional structures up to a total of 107,
108 and 109 samples. The histogram of the mutation averaged proba-
bility distribution (green bars) is tilted to the right, indicating that the
mutations tend to destabilize the most stable structures. Raising the
temperature has a similar effect, as demonstrated by the histogram of
the WT distribution transformed to the optimal effective temperature
T ∗eff defined in the main text (red bars).

computational tools developed by Hofacker et al. [24] and
sampling 106 structures for each sequence. To establish the
generality of our results we also analyzed a markedly differ-
ent system, the model of 3 × 3 × 3 compact lattice proteins
[7]. We first randomly selected 12000 sequences, and desig-
nated them as the WT. Subsequently, similarly to the miRNA
precursor sequences, for each of these WT sequences we (i)
generated all of its single point mutants, and (ii) determined
the equilibrium probability distributions of all 103346 possi-
ble 3D structures of the WT and the mutant sequences.

Two typical examples, a miRNA and a lattice protein, are
shown in Fig. 1. Since depicting the probability distribution
of a large number of secondary structures is not feasible, to
obtain an easier to visualize representation, we grouped the
structures into 20 bins in such a way that each bin accommo-

dated exactly 1/20th of the WT equilibrium probability dis-
tribution (PWT). The bins were filled from left to right with
structures in decreasing order of their WT probability (start-
ing with the most probable one, i.e., with the structure hav-
ing the lowest free energy GWT). To ensure that each bin
contained equal probability, structures at bin boundaries were
split among neighboring bins. The (generally non-integer)
number of structures belonging to each bin is shown in the
panels below the histograms. Examining Fig. 1 we can see
that the histogram of the WT equilibrium distribution (PWT,
blue bars) is uniform by construction. The histogram of the
mutation averaged probability distribution (Pmut, green bars),
however, deviates from uniformity and is tilted to the right,
indicating that the mutations tend to destabilize the most sta-
ble structures. Raising the temperature is expected to have
a similar effect. Indeed, choosing the optimal effective tem-
perature (T ∗eff ), for which the Euclidean distance between the
temperature transformed and mutation averaged distributions,

d(Teff) =

√∑
i

[Peff(i, T, Teff)− Pmut(i, T )]
2
, (5)

is minimal, the histogram of the transformed distribution
(Peff , red bars) approximates that of the mutation averaged
distributions remarkably well. The only significant discrep-
ancy (mostly observed for miRNAs) occurs at the rightmost
bin, which contains rarely visited, high energy, non-native
structures. Among the many possible statistical distances we
chose the Euclidean distance because it is relatively insensi-
tive to these statistically insignificant cases.

In the leftmost panels of Fig. 2 the Euclidean distance
d(Teff) (solid lines) is plotted as a function of the effective
temperature Teff for both examples from Fig. 1. If there ex-
isted a Teff at which d(Teff) were exactly zero, then the curve
would have a “V”-shaped bottom. In reality, however, this is
never the case, and the d(Teff) curve has a non-zero parabolic
minimum at T ∗eff (red arrow in the top left panel of Fig. 2), with
second derivative d′′(T ∗eff). The half width (green interval in
the top left panel of Fig. 2) of the fitting parabola (dashed
lines) between the points where the parabola touches the two
tangentials (dotted lines) that form a “V” as they intersect the
horizontal axis at T ∗eff ,

δT ∗eff =

√
2d(T ∗eff)

d′′(T ∗eff)
, (6)

can be used to estimate the uncertainty in determining the ef-
fective temperature.

The middle and right panels of Fig. 2 show the distributions
of the optimal effective temperatures T ∗eff and their uncer-
tainties δT ∗eff , respectively, for all studied miRNAs (top) and
model proteins (bottom). The typical uncertainty (∼ 0.02T
for the proteins and ∼ 0.03T for the miRNAs) is considerably
smaller than both the width of the corresponding T ∗eff distri-
bution and the typical value of T ∗eff , indicating the existence
of a well defined optimal effective temperature for nearly all
miRNAs and proteins.

For the miRNAs the length dependence of T ∗eff can also be
examined (see Fig. 3, where the length L is defined as the
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FIG. 2. The distribution of the optimal effective temperature for miRNAs and lattice proteins. In the leftmost panels the Euclidean
distance d(Teff) (solid lines) is plotted as a function of the effective temperature Teff for both examples from Fig. 1. The middle panels show
the distributions of the optimal effective temperatures T ∗eff (red arrow in top left panel), while the rightmost panels show the distribution of
uncertainties δT ∗eff (green interval in top left panel).
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FIG. 3. Relationship between sequence length and optimal ef-
fective temperature. The optimal effective temperature is cor-
related with the reciprocal of the sequence length for the 23766
miRNA precursor sequences considered (Person’s ρ = 0.582, with
p < 2.2× 10−16). Together with the intersection of the vertical axis
at T ∗eff/T ≈ 1, this is consistent with the typical effect of a point
mutation on the most stable structures being the breaking of a few
hydrogen bonds and a corresponding increase of the free energy by
about 12kBT .

number of nucleotides). The data show that T ∗eff is roughly
proportional to 1/L, with a coefficient of about 12T . This is
not surprising if we realize that the most probable effect of
a point mutation on the most stable structures is the break-
ing of a few hydrogen bonds and the concomitant increase of
the free energy by about 12kBT . Distributing this increase

uniformly among the L nucleotides as a result of averaging
over point mutations is analogous to raising the temperature
by about 12T/L.

A similar length dependence of T ∗eff is expected for the pro-
tein model (and any other systems), as well. Our data for
L = 27 amino acids suggest a slope of about 3T , which is
consistent with an energy cost of about 3kBT of changing an
amino acid in the most stable structures.

The diversity of proteins and nucleic acids we find in the
living world are the result of evolution; their properties are
determined by the laws of physics and chemistry [25]. To de-
cipher the interplay of these two kinds of causality we have to
understand the relationship between molecular sequence and
function. The existence of a well defined mutational temper-
ature demonstrates a general property of this relationship: the
biophysics of RNA and protein structures imposes a statisti-
cal equivalence between the effects of mutational and thermal
perturbations. In other words, the biological noise introduced
by point mutations is quantitatively analogous to the physical
noise generated by thermal fluctuations.

In an evolutionary context this implies that selection for ro-
bustness against either of these will produce, as a correlated
by product, robustness against the other. Our result suggests
an explicit model of how maintaining stability, a major con-
straint in the evolution of biological macromolecules, leads to
stability against point mutations (both at the short time scales
of molecular replication and the long time scales of organism
reproduction), and also facilitates opportunities for molecular
innovation by allowing increased neutral variation [17, 26].
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