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Based on two elastically coupled reaction coordinates, representing the surface motion and the internal rear-
rangement of a protein, we introduce and analyze a simple model for the interpretation of the viscosity depen-
dence of the rate constant of a broad range of conformational transitions. We show how the short-wavelength
components of the roughness of the protein’s energy landscape can combine together to provide an internal fric-
tion. Our model reproduces and explains a variety of experimental observations, including the Arrhenius-like
temperature dependence of the apparent internal friction coefficient. A consequence of the model is that the
activation energy of the transition is reduced by that of the internal friction.
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The temperature dependence of reaction rates usually fol-
lows the Arrhenius equation remarkably well. Furthermore,
in case of strong friction (i.e., in the over-damped regime),
valid for most enzymatic reactions and protein conformational
changes, Kramers showed that the rate constant (k) of a re-
action is inversely proportional to the friction coefficient (γ)
characterizing the reaction coordinate [1, 2]:

k =
1

γ
A0 exp

(
−∆Ea

kBT

)
, (1)

where ∆Ea is the activation energy of the reaction, kB is the
Boltzmann constant, T ≈ 300 K is the absolute temperature,
and A0 is a temperature- and friction-independent prefactor.

The origin of friction is poorly understood. For protein con-
formational changes it has two main ingredients. One is the
external friction caused by the displacement of the molecules
of the surrounding medium (mostly water), and a concomitant
reorganization of a large number of non-linear intermolecular
interactions, through which mechanical energy is dissipated
into heat. The other one is the internal friction, resulting
from a similar reorganization of non-linear intramolecular in-
teractions (bonding and non-bonding alike) inside the protein.
How these two friction sources couple to each other to pro-
duce a single friction coefficient (γ) is not obvious. Several
experiments have been performed to separate the effects of
the external friction by varying the viscosity (η) of the exter-
nal medium through the addition of viscogenic cosolvents (for
a comprehensive review see Ref. [3]). In many cases [4–7] a
simple linear contribution of the viscosity to the friction coef-
ficient was observed:

γ ∝ η + σ , (2)

where the parameter σ, which characterizes the relative contri-
bution of the internal friction, can be referred to as the “appar-
ent internal viscosity.” Note that the authors of Refs. [5, 6] at-
tributed the viscosity dependent and independent terms of the

reciprocal rate constant to “solvent friction-controlled” and
“internal friction-controlled” time scales, respectively, and
thus considered the transitions to be composed of two se-
quential, rather than parallel processes. Their clearly mono-
exponential relaxation data, however, contradicts to this pic-
ture, and better support a single process that is affected by
both external and internal friction in parallel.

Some of the experiments performed at different temper-
atures [5–7] indicated that this internal viscosity parame-
ter (similarly to the viscosity of liquids) also follows an
Arrhenius-like temperature dependence:

σ = σ0 exp

(
∆Eσ
kBT

)
(3)

with an apparent activation energy ∆Eσ and prefactor σ0. Re-
cent experimental evidences on the activation of trypsin [7]
indicated that single point mutations in the hinge region of
the protein can alter the apparent activation energies of both
the conformational change (∆Ea) and the internal friction
(∆Eσ), but in such a way that their sum remains essentially
unaltered.

In other cases [8, 9] the friction coefficient exhibited a de-
creasing slope as the viscosity was increased, and could be
better fitted by a power function γ ∝ ηp with exponent p
(where 0 < p < 1). This exponent, however, is diffi-
cult to interpret. Several concepts were proposed to explain
the power-law dependence, including the difference between
macroviscosity and microviscosity [9–11]; or the possibil-
ity of frequency-dependent friction [12]; or the presence of
a second, slowly fluctuating, perpendicular reaction coordi-
nate [13]. For a specific model Zwanzig showed [14] that if
it is only this second reaction coordinate that is influenced by
the viscosity of the external medium, then the viscosity de-
pendence of the reaction rate can indeed follow a power-law.
Note also, that in a narrow viscosity range near the viscos-
ity of water the two (linear and power-law) formulae fit the
experimental data equally well, and for large viscosities the
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FIG. 1. Schematic representation of the model of two reaction coor-
dinates coupled by a harmonic potential with spring constant κ. The
external reaction coordinate (x1) characterized by friction coefficient
(γ1) experiences a flat potential, whereas the internal one (x2) char-
acterized by friction coefficient (γ2) moves in a sinusoidal potential,
representing one of the short wavelength components of the rough
energy landscape of the protein. The pulling forces (f1 and f2) and
elastic forces (−fe and fe) are denoted by gray arrows.

observed deviation from linearity might be attributed to the
adverse effects of the high concentrations of the cosolvent. It
is well possible that no unified theory exists for the descrip-
tion of the viscosity dependence of reaction rates, but rather,
different enzymatic reactions and conformational changes can
be grouped into several different classes.

Based on two elastically coupled parallel reaction coordi-
nates (corresponding to the surface motion and the internal
rearrangement of the molecule, respectively), here we intro-
duce and analyze a new concept for the interpretation of the
viscosity dependence of the rate constant of a broad range of
reactions. This concept explains the Arrhenius-like tempera-
ture dependence of the apparent internal friction, as well as
the invariability of the sum of the apparent activation energies
of the reaction (∆Ea) and the internal friction (∆Eσ). Under
certain conditions it also provides a decreasing slope to the
friction coefficient (γ) as a function of the external viscosity.
Our analytical calculations supplemented with numerical sim-
ulations demonstrate that depending on the coupling strength
between the two reaction coordinates (which is related to the
flexibility of the molecule) there exists a cross-over length
scale, below which all the short-wavelength components of
the roughness of the energy landscape blend into the apparent
internal friction.

During a conformational change not only the surface of the
protein moves with respect to the external aqueous environ-
ment, but its interior also rearranges. It is thus natural to dis-
tinguish two reaction coordinates: an external one (x1) char-
acterizing the motion of the surface, and an internal one (x2)
corresponding to the internal rearrangement. The two reaction
coordinates are not independent of each other, as the elastic
body of the protein couples them together. Their coupling is

characterized by a harmonic potential

U12(x1, x2) =
κ

2
(x1 − x2)2 , (4)

with coupling strength κ (Fig. 1). The external reaction coor-
dinate represents the interaction of the surface of the protein
with the solvent, so it experiences a flat potential and its fric-
tion coefficient γ1 is considered proportional to the viscosity
(η) of the external medium. The internal reaction coordinate,
on the other hand, is hidden from the solvent, and it experi-
ences the hierarchically organized, rough energy landscape of
the protein [15, 16]. Our aim is to show that the short wave-
length components of the roughness constitute a viscosity in-
dependent friction coefficient of this reaction coordinate. To
this end we assume that all components below wavelength L
are already incorporated into the internal friction coefficient
γ2, and we take the component with wavelength L into con-
sideration explicitly:

U2(x2) = ∆E
1− cos(2πx2/L)

2
, (5)

where ∆E is the height (i.e., twice the amplitude) of this com-
ponent. All longer wavelength components (including the
transition barrier of the conformational change) are omitted
from now on, because we are only interested in the contribu-
tion of this selected component of the landscape roughness to
the internal friction coefficient.

Let us recall [17, 18] that if x2 were decoupled from x1

(which is equivalent to setting γ1 = 0) and, thus, moved in a
one-dimensional sinusoidal potential, then on the long scale it
would exhibit a diffusive motion with effective friction coef-
ficient

γ2I
2
0

(
∆E

2kBT

)
≈ γ2

kBT

π∆E
exp

(
∆E

kBT

)
, (6)

where I0 is the modified Bessel function of the first kind, and
the approximation holds for ∆E > kBT .

Now we can turn to the questions of how the long-scale dif-
fusion of the coupled system – which governs the time scale of
any long-scale processes, including the crossing of the transi-
tion barrier of the conformational change – depends on the ex-
ternal friction coefficient (γ1); and under what conditions the
periodic potential of the internal reaction coordinate merges
into the internal friction coefficient. Based on the fluctuation-
dissipation theorem, instead of determining the diffusion co-
efficient of the unperturbed system directly, we apply small
forces f1 and f2 on the two reaction coordinates, respectively,
and determine their average drift velocity, which is also pro-
portional to the diffusion coefficient. This latter method is
numerically more efficient and accurate. The drift velocity,
due to the coupling, must be the same for both reaction coor-
dinates, and it is expected to be proportional to the sum of the
two forces, f = f1+f2, as long as their energetic perturbation
per period is much smaller than kBT , i.e., f1, f2 � kBT/L.

In two limiting cases the drift velocity can be calculated an-
alytically [7]. For strong coupling (κL2 � ∆E), i.e., when
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the separation of the two reaction coordinates over the period-
length requires much larger energy than the height of the peri-
odic potential, the two reaction coordinates behave as a single
one and, thus, their average speed is:

vκ→∞ =
f

(γ1 + γ2)I2
0

(
∆E

2kBT

) ≈ f

(γ1 + γ2) kBTπ∆E exp
(

∆E
kBT

) .
(7)

For weak coupling (κL2 � ∆E) the change of the elastic en-
ergy is negligible (relative to the barrier heights) when the sep-
aration of the two reaction coordinates changes by an amount
comparable to the period-length, thus, an essentially position
independent elastic force (−fe and fe, respectively) can be
assumed between them. The drift velocity for

vκ→0 =
f1 − fe

γ1
, (8)

vκ→0 =
f2 + fe

γ2I2
0

(
∆E

2kBT

) , (9)

from which, after eliminating fe, we arrive at

vκ→0 =
f

γ1 + γ2I2
0

(
∆E

2kBT

) ≈ f

γ1 + γ2
kBT
π∆E exp

(
∆E
kBT

) .
(10)

In both limits the drift velocity takes the form

v =
f

γ1 + γeff
2 (T )

A(T ) , (11)

where γeff
2 (T ) is the apparent internal friction of the system,

and A(T ) is the apparent activation function of the diffusion
process. For strong coupling the periodic potential leaves
the internal friction unaffected, and the potential height con-
tributes to the activation energy of the process. For weak cou-
pling the exact opposite occurs, as the potential affects only
the apparent internal friction, and the potential height con-
tributes to the activation energy of the internal friction.

To determine the cross-over between the two limits, we nu-
merically determined the steady-state probability distribution
and current density of the discretized version of the corre-
sponding Fokker-Planck equation (using lattice constant ∆x)
for f1 = f2 = 0.01kBT/L. For symmetry reasons (i.e., to
satisfy that the velocity is an odd function of the force) the
leading term of the discretization error of the drift velocity has
to scale as (f∆x)2/(kBT )2. We used this scaling property to
extrapolate to the continuum limit. We verified that for small
forces (f1, f2 � kBT/L) the resulting drift velocity was in-
deed proportional to f = f1 + f2, and it was independent of
how f was distributed among f1 and f2.

Our model has three independent parameters, which, in di-
mensionless form, are γ1/γ2, κL2/∆E, and ∆E/kBT . We
explored a wide range of γ1/γ2 and κL2/∆E values, and to
determine the temperature dependence of the measured quan-
tities, we applied three different temperatures (or potential
heights): ∆E/kBT = 10, 11, and 12. This temperature range
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FIG. 2. The reciprocal of the drift velocity (1/v, in units of
γ2/f ), which is proportional to the total friction coefficient (γ), as
a function of the external friction coefficient (γ1, in units of γ2) for
∆E = 11kBT and four different values of κ. The lower dotted line
represents the κ = 0 limit, whereas the upper one shows the κ→∞
limit. The curves start from the common value of I2

0 [∆E/(2kBT )]
at γ1 = 0, and converge to straight lines of different slopes for
γ1 →∞.

allowed the potential height to exceed the thermal energy scale
considerably, yet it ensured high numerical accuracy.

We found that the reciprocal of the drift velocity (1/v),
which is proportional to the total friction coefficient (γ), as a
function of the external friction coefficient (γ1) has dual char-
acteristics (Fig. 2). For large values of the external friction
coefficient (γ1

>∼ γ2) it converges to a straight line (with a
slope depending on κ) and recovers Eq. 2, which is consis-
tent with the existence of an apparent internal viscosity [4–7].
For smaller values (γ1

<∼ γ2) it exhibits an unexpected, non-
linear behavior, with a decreasing slope, resembling to some
of the experimental observations [8, 9]. It is uncertain, how-
ever, if it is this non-linearity that is manifested in the observed
power-law dependence of these experiments. The reason of
the deviation from linearity is that for γ1 � γ2 the fast exter-
nal reaction coordinate is slaved by the slow internal one and,
thus, the system behaves as if the external reaction coordinate
was rigidly coupled to the internal one (i.e., κL2/∆E � 1).
This is why each curve converges to the κ → ∞ line for
small γ1/γ2, and then takes the value of I2

0 [∆E/(2kBT )] at
γ1/γ2 = 0.

Since 1/v is an almost linear function of γ1 for γ1
>∼ γ2, it

can be well fitted by Eq. 11. The resulting values of γeff
2 (T )

and A(T ) as functions of the coupling strength (κ) are plot-
ted in Fig. 3 at three different temperatures and four selected
values of γ1/γ2. Both γeff

2 (T ) and A(T ) have Arrhenius-like
temperature dependence:

γeff
2 (T )

γ2
= cσI

2
0

(
∆Eσ
2kBT

)
≈ cσ

kBT

π∆Eσ
exp

(
∆Eσ
kBT

)
, (12)

A(T ) = caI
−2
0

(
∆Ea

2kBT

)
≈ ca

π∆Ea

kBT
exp

(
−∆Ea

kBT

)
,(13)
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FIG. 3. The apparent internal friction coefficient (γeff
2 (T ), in units

of γ2, top panel) and apparent activation function (A(T ), bottom
panel) as functions of the coupling strength (κ, in units of ∆E/L2)
at three different temperatures (distinguished by gray-scale) and four
selected values of γ1/γ2 (distinguished by line-type).

where cσ and ca are two fitting coefficients (of the order of
unity). The apparent activation energies of the internal friction
(∆Eσ) and the diffusion process (∆Ea) are plotted in Fig. 4
as functions of the coupling strength (κ). They converge to
the analytically predicted values (see Eqs. 7 and 10) in the
limits of weak and strong coupling. One can also notice that
these apparent activation energies cross over from one of the
limiting values to the other one in a narrow range of κ, and that
∆Eσ + ∆Ea ≈ ∆E throughout the entire parameter range.

For γ1 � γ2 the value of ∆Ea can also be estimated, as
under this condition it is the fast internal reaction coordinate
that is slaved by the slow external one, so at any position x1 of
the external reaction coordinate the position x2 of the internal
one can be integrated out, providing the restricted free energy

F1(x1) = −kBT ln

∫ ∞
−∞

exp

[
−U2(x2) + U12(x1, x2)

kBT

]
dx2

(14)
to the external reaction coordinate. The height of this free
energy (F1(L/2) − F1(0)) is plotted as circles in Fig. 4, and
indeed it approximates ∆Ea remarkably well for γ1 � γ2.

In conclusion, our simple model of elastically coupled in-
ternal and external reaction coordinates can reproduce a va-
riety of experimental observations and, thus, sheds light on
the physical origin of the viscosity and temperature depen-
dence of the rate constant of a broad range of enzymatic re-
actions and protein conformational changes. When the inter-
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FIG. 4. The apparent activation energies (in units of ∆E) of
the internal friction (∆Eσ , black lines) and the diffusion process
(∆Ea, gray lines) as functions of the coupling strength (κ, in units of
∆E/L2) at four values of γ1/γ2 (distinguished by line-type). The
approximation in the γ1/γ2 →∞ limit is plotted as circles.

nal friction dominates (e.g., the reaction involves mostly the
rearrangement of the interior of the protein), the total fric-
tion coefficient (γ ∝ 1/v) can exhibit a decreasing slope as
the external friction is increased. On the other hand, when
the external friction is more relevant, then up to a wavelength
L ≈

√
∆E/κ, the roughness of the internal potential merges

into a well defined apparent internal friction coefficient, and
provides an additive contribution to the external friction co-
efficient. Intuitively, the flexibility of the protein smears out
and seemingly eliminates the short-scale roughness of the in-
ternal potential (leaving all the long-scale components intact)
and, at the same time, blends it into an apparent internal fric-
tion. The most important consequences of this phenomenon
are that the internal friction follows an Arrhenius-like tem-
perature dependence, and that its apparent activation energy
reduces the apparent activation energy of the conformational
transition by about the same amount. This latter effect is con-
sistent with one of the most recent experiments [7], in which
changing the flexibility of the protein (by introducing a point
mutation) the apparent internal friction coefficient changed in
such a manner that the sum of the apparent activation energies
of the internal friction and of the reaction remained largely in-
tact. For nanometer-sized protein domains with Young moduli
of a few gigapascals, and for landscape roughness of the order
of 10 kJ/mol, the cross-over wavelength falls into the phys-
ically reasonable angstrom range, justifying the relevance of
our concept and its predictions.
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