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Abstract
We introduce a simple dynamical model, which can explain
the formation of hat-shaped surface attached liposomes by
taking membrane-membrane adhesion into account. The
model reveals that hat formation is a general phenomenon,
although it is difficult to observe experimentally. We discuss
under what conditions hat-shaped vesicles can become ob-
servable. One such scenario, which is also consistent with
experiments, is that the dynamics is slowed down by the low
outflow rate of the internal fluid of the vesicle through the
narrow space between the two bilayers of the brim.

Introduction
Lipid bilayers on solid support, often referred to as supported
lipid bilayers (SLBs), are frequently used models of biolog-
ical membranes. These bilayers are most often produced
by the spontaneous rupture and fusion of unilamellar vesi-
cles depositing from solution. Due to the high scientific and
technological importance of SLBs, their formation has been
studied extensively over the past two decades. Early ensem-
ble techniques, such as quartz crystal microbalance (QCM)1

or surface plasmon resonance (SPR),2 indicated that SLB
formation requires a critical vesicle coverage. Microscopic
techniques, such as fluorescence microscopy (FM),3 atomic
force microscopy (AFM),4 and cryotransmission electron
microscopy (cryo-EM),5 on the other hand, revealed the oc-
currence of isolated ruptures of individual vesicles. Recent
FM studies by Weirich et al.6 and interferometric scatter-
ing microscopy (iSCAT) by Andrecka et al.7 reconciled the
apparent conflict between the existence of isolated ruptures
and the required critical vesicle coverage for SLB forma-
tion, suggesting that spontaneous ruptures of isolated vesi-
cles provide small bilayer patches, which then act as nucle-
ation sites and grow by inducing the rupture of vesicles at
the patch edges. Efficient bilayer growth can thus occur only
at sufficiently high vesicle coverage.

In their seminal work, Jass et al.8 used tapping mode AFM
to visualize the sequence of events involved in the transi-
tion from attached liposomes to bilayer patches. They ob-
served that on hydrophilic supports the vesicles initially take
a spherical cap shape (see Fig. 1(a) without the pore), and
at a later stage they start flattening from the vesicle-support
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Figure 1: Schematic pictures of the cross sections of surface
attached (a) cap-shaped and (b) hat-shaped vesicles in the
limit of strong adhesion, with membrane pores at the top.
Several parameters and force vectors (per unit length) are
also indicated.

contact line toward the center, resembling a cylindrically
symmetric hat (see Fig. 1(b) ignoring the pore) with a brim
growing inward and a shrinking cap-shaped crown. After
the crown disappears, the top bilayer of the resulting flat
disk-like vesicle either rolls or slides over the bottom bilayer
to form a single bilayer patch. The AFM cross sections of
a cap-shaped and a hat-shaped vesicle are demonstrated in
Figs. 2(a) and (b), respectively. Jass et al. also notes that
hat formation appears to occur when the edge of an already
existing bilayer patch gets in contact with the vesicle.

We have recently developed a theoretical model to under-
stand and describe the details of the rupture process of lipo-
somes along solid surfaces.9 This and other previous mod-
els,10,11 however, cannot account for brim formation, be-
cause the interaction of bilayers has not been taken into con-
sideration in any of those models. Our goals here are (i) to
extend our model by taking membrane-membrane adhesion
into account; and to examine (ii) how frequently brim forma-
tion occurs during vesicle rupture if membrane-membrane
adhesion is present; and (iii) under what conditions hat-

1

nyeste@angel.elte.hu
derenyi@elte.hu


 0

 100

 0  200  400  600  800  1000  1200
h 

[n
m

]

 
 0

 100

 2000  2200  2400  2600  2800  3000  3200 

x [nm]

Figure 2: The AFM cross sections of (a) a cap-shaped and
(b) a hat-shaped vesicle reproduced from Fig. 3C of Ref. 8.
The three dotted lines (separated by the bilayer thickness)
indicate that the brim is two bilayers thick, and that the brim
on the left lies on top of a single bilayer.

shaped vesicles can last long enough to be observed experi-
mentally.

Model and results
In the presense of membrane-membrane adhesion12 the sta-
ble geometry of a vesicle (at fixed volume and surface area)
attached to a solid support is either a spherical cap13,14 or a
hat, as illustrated in Figs. 1(a) and (b), respectively. For sim-
plicity, we assume that the radius of curvature of the mem-
brane at both the vesicle-support and the crown-brim con-
tact lines is small compared to the size of the vesicle, i.e.,
the system is in the strong adhesion regime. In case of a
cap-shaped vesicle the surface tension of the membrane (σ )
in thermal equilibrium is given by the Young-Dupre equa-
tion,15 which is simply the condition of force balance at the
vesicle-support contact line:

σ =
W

1+ cosϕ
, (1)

where W is the adhesion energy between the membrane and
the solid support per unit area (W > 0 for attractive interac-
tion) and ϕ is the contact angle between the vesicle and the
solid support. The contact angle is uniquely determined by
the volume V and the projected area A‖ (i.e., the area of the
shape after averaging out the thermally induced membrane
undulations) of the vesicle. This projected area is smaller
than the total area of the membrane (A0) by usually less than
a few percent.15

For a hat-shaped vesicle the force balance conditions at
the vesicle-support and the crown-brim contact lines are

σ =
W +Wm

2
(2)

and
σ =

Wm

1− cosϕb
, (3)

respectively, where Wm is the membrane-membrane adhe-
sion energy per unit area and ϕb is the contact angle between
the crown and the brim. Note that Wm characterizes the ad-
hesion between a surface bound and a free-standing mem-
brane, and this adhesion might be stronger than between two
free standing membranes, because the surface bound mem-

brane is flatter and has already lost a portion of its entropy.
After eliminating σ from Eqs. (2) and (3), the value of ϕb
can be expressed as

cosϕb =
1− (Wm/W )

1+(Wm/W )
, (4)

which is independent of the geometrical properties of the
vesicle.

The hat shape is always a stable stationary state, because
any perturbation of the position of the crown-brim contact
line (e.g., by increasing its radius, Rb, and concomitantly de-
creasing its contact angle ϕb) results in a net force that points
towards the stationary position. Thus, whenever the geome-
try of the vesicle allows for both cap-shaped and hat-shaped
geometries, i.e., when ϕ < ϕb, the hat-shaped geometry will
be the stable one, because any infinitesimal brim along the
cap-shaped geometry will grow until the stationary hat shape
will have been reached.

We make two remarks here. One is that we have neglected
the curvature energy cost associated with brim formation,
which can offset the transition between the cap shape and
the hat shape to lower values of ϕ . For strong adhesion how-
ever, the curvature energy of the membrane at the outer edge
of the brim15 (which scales as RRcurvW , where R denotes the
vesicle-support contact radius and the local radius of curva-
ture Rcurv of the brim edge is only a few tens of nm) is indeed
small compared to the total adhesion energy (which scales as
R2W ). The other remark is that the crown could in principle
be positioned anywhere with respect to the brim (as long it
does not touch the brim edge). The central position is, how-
ever, preserved (i.e., the cylindrical symmetry remains un-
broken) if the hat evolves via an isotropic shrinkage of its
crown.

Combining the trigonometric relation cosϕb = (Rc −
Hc)/Rc with the Pythagorean theorem R2

c = (Rc−Hc)
2+R2

b,
where Rc and Hc denote the radius and height of the crown,
respectively, one can also express the contact angle as

cosϕb =
1− (Hc/Rb)

2

1+(Hc/Rb)2 . (5)

Comparing this expression with Eq. (4) results in

Wm

W
=

(
Hc

Rb

)2

, (6)

which provides a simple way for measuring the membrane-
membrane adhesion strength for equilibrium hat-shaped
vesicles. In the experiments of Jass et al.,8 where the slowly
changing vesicles can be considered close to equilibrium, the
ratio Hc/Rb is about 0.1, as can be seen in Fig. 2(b), thus the
membrane-membrane adhesion is about two orders of mag-
nitude weaker than the adhesion of the membrane to the solid
support (Wm/W ≈ 0.01).

The evolution of slowly changing (quasi-static) vesicles
can phenomenologically be described as follows. When a
vesicle gets in contact with a flat hydrophilic surface it takes
either a cap or a hat shape, and develops a surface tension
σ given by Eq. (1) or Eq. (2), respectively. The surface ten-
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sion then induces an excess pressure, the so-called Laplace
pressure, 2σ/Rc, inside the vesicle, where Rc is the radius of
the spherical cap or crown. If the membrane is leaky (e.g.,
it contains a pore), then the pressure will drive the internal
fluid out of the vesicle and make the vesicle loose its volume.
For slow leakage (i.e., under quasi-static conditions, which
is the case in the experiments of Jass et al.8) the shape of
the vesicle remains always close to equilibrium. Even if the
initial geometry is a cap, it will transform into a hat, when its
contact angle ϕ decreases to ϕb due to volume loss. As the
hat-shaped vesicle keeps loosing volume, its crown shrinks
and its brim grows, while the crown-brim contact angle ϕb
stays fixed. Eventually the vesicle looses all of its volume
and becomes a flat disc.

To provide a more quantitative description, which is valid
not only in the quasi-static limit, a detailed dynamical model
is required. Firs we summarize our recently introduced
model of cap-shaped vesicles with spontaneous pore open-
ings,9 and we extend it to hat-shaped geometries and include
the possibility of edge-induced pore openings. The model
assumes that the cap is always spherical (with cap radius Rc,
cap height Hc, contact angle ϕ , and radius of contact area
R) and the surface tension is homogeneous along the entire
membrane. In fact, it can be shown that the surface tension
equilibrates much faster than the shape of the vesicle.9

Spontaneous pore opening is an activated process and can
occur anywhere along the membrane. It is, however, ne-
glected at the contact area, where the adhesion makes it ener-
getically less favorable. For simplicity, pore opening is also
neglected at the contact line. The energy of a pore of ra-
dius r can be written as16–19 E = 2πrλ − πr2σ , where the
first term is the energy contribution of the free membrane
edge with line tension λ , and the second term accounts for
the energy gain due to the shrinkage of the membrane under
surface tension σ (for illustration see Fig. 1(a)). This energy
function provides a parabolic barrier at radius r∗ = λ/σ with
an activation energy of E∗ = πλ 2/σ . The opening of a pore
of radius r∗ can thus be considered to occur at a rate of

k = k0
Ac

a2 exp
(
−πλ 2/σ

kBT

)
, (7)

where kB is the Boltzmann constant, T ≈ 300 K is the abso-
lute temperature, Ac = A0−πR2 is the non-adhering surface
area of the cap-shaped vesicle, a2 is the surface area of a
lipid molecule with linear size a ≈ 0.8 nm,14 and k0 is the
local attempt rate of pore nucleation. It is estimated to be
of the order of k0 ≈ 108 1/s, which is consistent with the ns
time scale of molecular diffusion at nm distances, and also
with the molecular dynamics simulations of the formation
and disappearance of a single file of water across a lipid bi-
layer.20 Its exact value is largely irrelevant because of the
strong sensitivity of the exponential term on the value of σ .
The line tension λ is typically of the order of 10 pN.21,22

All the parameters of the rate of pore opening are material
properties of the membrane, except for the surface tension
σ , which depends on the geometry of the vesicle. If only
entropic stretching is considered, the surface tension can be

expressed as23

σ =
π2κ

a2 exp
(
−8πκ

kBT
Ac−Ac‖

Ac‖

)
, (8)

where κ ≈ 10−19 J is the bending rigidity of the bilayer,24

and Ac‖ = 2πRcHc− πr2 is the projected area of the non-
adhering part of the vesicle. As pore formation is accompa-
nied by the reduction of the surface tension, formation of a
second pore is an unlikely event, therefore, no more than one
pore is allowed to be present at the same time.

Since the geometry of a spherical cap is uniquely deter-
mined by its volume V and contact radius R, the time evolu-
tion of the shape of the vesicle is completely given by three
differential equations describing the dynamics of R, V , and
r. The contact radius propagates2,5,25–28 towards the Young-
Dupre equilibrium at a rate

Ṙ =
W − (1+ cosϕ)σ

η0cs
, (9)

where η0 ≈ 10−3 Pa s is the viscosity of the aqueous
medium, and cs denotes the surface drag coefficient. This
latter quantity has several different components.9 Hydrody-
namic friction makes a contribution of the order of unity.
The relative sliding between the two membrane layers (due
to the smaller area of the inner layer) provides a more sig-
nificant contribution of the order of πηm/η0 ≈ 103, where
ηm ≈ 0.2 Pa s is the viscosity of the membrane.16 Surface
inhomogeneities and impurities can further increase the drag
coefficient by several orders of magnitude.

When a pore is present in the membrane (which can be
anywhere along the non-adhering part of the cap) the volume
of the vesicle V changes as17,18,29

V̇ =−2
3

r3σ

Rcη0
, (10)

due to leakage driven by the internal Laplace pressure
2σ/Rc.

The radius of the pore is governed by17,18

ṙ =
σr−λ

2ηmd
, (11)

where d ≈ 5 nm is the thickness of the bilayer.14 This equa-
tion is valid as long as r� Rc, which usually holds until the
final stages of vesicle rupture. Pore closure occurs when the
pore radius becomes zero.

Numerical simulations of this model reveal a number of
different scenarios for the fate of a surface attached vesi-
cle (including partial flattening or SLB formation via either
the formation of a single pore or the opening and closing of
several subsequent transient pores) depending on the system
parameters and the initial conditions.9 To be able to recover
brim formation, the vesicle dynamics has to be extended to
hat geometries. As Fig. 1(b) illustrates, the dynamics of the
vesicle-support contact radius R changes to

Ṙ =
W +Wm−2σ

η0cs
, (12)
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and a fourth independent geometrical variable, the crown-
brim contact radius Rb appears, which propagates towards
its equilibrium position at a rate

Ṙb =−
Wm− (1− cosϕ)σ

η0cb
, (13)

where cb is its drag coefficient. Because cb is affected only
by hydrodynamic and intermonolayer friction, it is expected
to be of the order of 103. The transition from a cap to a
hat shape occurs when the condition Ṙ− Ṙb > 0 becomes
satisfied, and the transition back to a cap shape requires that
the width of the brim R−Rb decreases to zero.

Numerical simulations of this model reveal that after pore
opening the surface tension of the membrane usually drops
down to such an extent that the condition Ṙ− Ṙb > 0 gets
satisfied, and a brim forms. If, however, the pore closes back
again, the brim disappears, unless the equilibrium geometry
at the given volume is a hat shape.

The model can also produce long lasting transient brims
(an example is shown in Fig. 3) as observed experimentally
by Jass et al.,8 but only in a very narrow range of parameters.
A small change in W or cs either speeds up the dynamics dra-
matically or slows it down such that the vesicles cannot reach
the hat shape during the observation time. This might be the
reason, why hat-shaped vesicles have not been reported in
other experiments.

Jass et al. noted that hat formation appears to occur when
the edge of an already existing bilayer patch gets in con-
tact with the vesicle. Such an edge can induce the formation
of a membrane pore at the vesicle-support contact line and
fuse with the bottom bilayer of the vesicle, thereby making
the pore permanent. As long as the vesicle has a cap shape
its volume leaks out rapidly through this permanent pore.
When the vesicle’s shape changes to a hat, the leakage slows
down, because the internal fluid has to flow through the nar-
row space between the two bilayers of the brim. This can
naturally explain the existence of long lasting transient hat-
shaped vesicles in case of edge induced pore formation.

The rate of Poisseuille’s flow driven by a pressure differ-
ence ∆p between two parallel plates of length Lx and width
Ly separated by distance h is h3∆pLy/(12η0Lx). Although
the flow geometry inside the brim is slightly different, the
rate of the volume loss of the vesicle can be estimated by
Poisseuille’s flow rate under the assumptions that the driving
pressure is the Laplace pressure 2σ/Rc and that the effec-
tive length and width of the plates are of the same magnitude
(both comparable to width of the brim):

V̇ ≈−1
6

h3σ

Rcη0
. (14)

Thus, in case of an edge induced permanent membrane pore,
Eq. (10) should be replaced by Eq. (14), and Eq. (11) can be
omitted. The separation h of the top and bottom bilayers of
the brim is a couple of nm.

For strong adhesion (W ≈ 10−3 N/m, resulting in σ ≈
100.5× 10−3 N/m in the quasi-static limit), assuming h ≈
2 nm, and using the crown geometry of Fig. 2(b) (R ≈
300 nm, Hc ≈ 30 nm, leading to Rc = (R2 +H2

c )/(2Hc) ≈
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Figure 3: An example of the time evolution of the four
main geometrical variables (V , r, R, and Rb) of a hat form-
ing vesicle. The brim appears at about 530 s, and the
crown diminishes at about 620 s. The system parameters
are W = 4× 10−3 N/m, Wm = 4× 10−4 N/m, λ = 10 pN,
cs = 5×107, cb = 103, A = 100 µm2.

1500 nm) the volume loss rate is about 4× 105 nm3/s. The
volume of the same hat-shaped vesicle is about πR2Hc/2 ≈
4× 106 nm3, i.e., it takes about 10 s for the vesicle to com-
pletely loose its volume. Although this is a crude estima-
tion (e.g., the real value of W might be considerably smaller
and, thus, the volume loss slower), it is consistent with the
minute-long flattening times observed by Jass et al., and sup-
ports their hypothesis that hat formation is induced by a free
membrane edge.

Discussion and Conclusion
In conclusion, we have introduced a simple model of the
dynamics of surface attached vesicles, which, for the first
time, can account for the formation of hat-shaped vesicles.
The model reveals that if membrane-membrane adhesion is
present (even if it is several orders of magnitude weaker than
the membrane-support adhesion) hat formation is a general
phenomenon. First, a brim often appears when the surface
tension of the membrane drops down (and Ṙ− Ṙb > 0 be-
comes satisfied) due to the formation of a membrane pore.
Such a brim can rapidly disappear when the pore recloses
and the surface tension goes up again. Second, a brim
also appears, when the volume of the vesicle becomes small
enough (such that ϕ < ϕb). Hat-shaped vesicles are, how-
ever, difficult to observe, because if the conditions are suit-
able for pore opening and volume loss, then vesicle rupture
usually proceeds quickly. The are two exceptions. One is
when the surface inhomogeneities make the surface drag co-
efficient cs large enough (of the order of 108) to slow down
the dynamics to the appropriate time scale. This however,
requires the parameters to be fine-tuned. The other excep-
tion is, when pores do not open spontaneously, but they can
be induced at the contact lines by the edges of preexisting
membrane patches. When the volume of the vesicle becomes
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small enough for a brim to appear, the volume loss automat-
ically slows down, due to the low flow rate of the fluid be-
tween the two bilayers of the brim. This scenario requires
less fine-tuning of the parameters, and is consistent with the
experimental observations by Jass et al.8 The relevance of
this type of hat formation is that it not only makes the hat-
shaped vesicles observable, but it also slows down the SLB
formation significantly.
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