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We generalize the model of a rate process involving the passage of an object through a fluctuating bottleneck. The rate
of passage is considered to be proportional to a power function of the radius of the bottleneck with exponent α > 0.
The fluctuations of the bottleneck are coupled to the motion of the surrounding medium and governed by Langevin
dynamics. We show numerically and also explain analytically that for slow bottleneck fluctuations the long time decay
rate of the process has a fractional power law dependence on the solvent viscosity with exponent α/(α+2). The results
are consistent with the experimental data on ligand binding to myoglobin, and might also be relevant to other reactions
for which exponents between 0 and 1 were reported.

I. INTRODUCTION

The rates of reactions in overdamped environments can of-
ten be understood in terms of Kramers’ theory of diffusion
over a potential barrier1,2. Kramers’ theory predicts that the
rate constants are inversely proportional to the friction coeffi-
cient characterizing the reaction coordinate along the reaction
pathway. When the main source of friction is the solvent, then
the friction coefficient is expected to be proportional to the
solvent viscosity. It is, however, not obvious how the viscos-
ity of the solvent affects the rate constant if the reaction is
accompanied by the internal reorganization of the molecules
involved (e.g., during protein conformational changes, or lig-
and motion in enzymes).

For many enzymatic reactions3,4, first observed in case of
ligand binding to myoglobin5, the rate constant µ appears to
be inversely proportional to a fractional power function of the
solvent viscosity η with exponent p (where 0 < p < 1):

µ ∝ 1

ηp
. (1)

The exponent is difficult to interpret, and several alternative
concepts were proposed to explain the observations. One such
possibility is that because the solvent viscosity is usually con-
trolled by the addition of viscogenic cosolvents, the microvis-
cosity in the vicinity of the molecule can be different from
the measured macroviscosity of the solvent6–8. Another pos-
sible explanation concerns the frequency-dependence of the
friction9.

Inspired by the ligand binding experiments of Beece et al.5,
a third possibility was introduced by Zwanzig10, who assumed
the primary process to be passage through a fluctuating bot-
tleneck. This model considers two perpendicular reaction
coordinates11. One of them is the position of the ligand inside
the protein, and the other one is the radius of the bottleneck
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which the ligand has to get through. The ligand’s motion in-
side the protein is supposed to be independent of the solvent,
whereas the bottleneck is assumed to follow the proteins’ con-
formational fluctuations, which are coupled to solvent motion.

Under specific conditions (quadratic potential for the radius
of the bottleneck, and quadratic dependence of the escape rate
on the radius) Zwanzig could show analytically that (1) the
decay curves are not exponential at short times, but change to
exponential at long times; and (2) the long time decay rate is
inversely proportional to the square root of the solvent viscos-
ity, i.e., p = 1/2. Here we generalize this model (allowing a
more general potential for the bottleneck, and a more general
dependence of the escape rate on the radius), then show nu-
merically how the exponent p depends on the system parame-
ters, and finally, we justify our numerical results by analytical
arguments.

II. THE MODEL

In Zwanzig’s model10 the ligand concentration C decays
according to a simple rate equation

dC

dt
= −K(r)C , (2)

where the decay rate K(r) is proportional to a power function
of the radius r of the bottleneck:

K(r) = krα (3)

with prefactor k and exponent α > 0.
The radius fluctuates, and its time evolution is given by the

Langevin equation

dr

dt
= − 1

γ

dU(r)

dr
+ F (t) , (4)

where the friction coefficient γ is proportional to the solvent
viscosity η, and the potential U(r) experienced by the radius
has the form

U(r) =
1

β
κrβ (5)
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with strength κ and exponent β > 0. A hard reflecting barrier
is imposed at r = 0 so that only positive radii are involved.
The thermal (Gaussian white) noise F (t) has the usual auto-
correlation function

〈F (t)F (t′)〉 = 2
kBT

γ
δ(t− t′) , (6)

where kB is the Boltzmann constant and T is the absolute tem-
perature.

To be able to solve the model analytically, Zwanzig chose
the specific values α = β = 2. For generality, here we keep
both of these exponents as free parameters, and investigate
their effects on the rate process.

The goal is to find the noise-averaged concentration 〈C(t)〉.
First we have to define a noise-averaged concentration C(r, t)
for a given bottleneck radius r, so that

〈C(t)〉 =
∫ ∞
0

C(r, t) dr . (7)

C(r, t) satisfies the Smoluchowski equation with a sink12:

∂C

∂t
= −K(r)C +

∂

∂r

(
kBT

γ

∂C

∂r
+

1

γ

dU(r)

dr
C

)
. (8)

A reflecting boundary condition is imposed at r = 0. The
initial condition is thatC has its equilibrium distribution in the
absence of the reaction sink. After plugging Eqs. (3) and (5)
into the Smoluchowski equation and introducing the notations
λ = κ/γ and θ = kBT/κ we arrive at

∂C

∂t
= −krαC + λθ

∂

∂r

(
∂C

∂r
+
rβ

θ
C

)
, (9)

which is the generalized form of Eq. (7) of Zwanzig’s original
article10. This equation has three dimensional parameters (k,
λ, and θ), out of which two can be scaled out (e.g., setting
k = θ = 1) by rescaling time and space accordingly. In other
words, only their dimensionless combination

λ̃ =
λ

kθ(α−β+2)/β
(10)

is relevant to the model.
For λ̃ � 1, i.e., when the bottleneck equilibrates much

faster than the ligand escapes, then r remains close to its equi-
librium distribution at all times, and C decays exponentially
with a viscosity independent rate constant 〈krα〉. On the other
hand, for λ̃ � 1, i.e., when the dynamics of the bottleneck
is slow, the behavior of the model is more interesting. As
Zwanzig pointed out, the decay of C is not exponential at
short times, but changes to exponential at long times. In fact,
it is the exponential decay of the slowest eigenmode that is
observed in the long run. Zwanzig determined that the long
time exponential decay rate for α = β = 2 is (kθλ)1/2, i.e., it
is inversely proportional to a fractional power function of the
solvent viscosity η with exponent p = 1/2.

III. RESULTS AND DISCUSSION

For general values of α and β the Smoluchowski equation
cannot be solved analytically. Therefore, we spatially dis-
cretized the equation (up to a sufficiently large value of r) to
obtain a set of stationary (Markovian) master equations, and
determined its dominant eigenvalue (i.e., the one closest to
unity, corresponding to the slowest eigenmode) by applying
either the scaled power method or a root finding technique.
The continuum limit was extrapolated through successive re-
finement of the discretization. For λ̃ � 1 we found that the
decay rate of the slowest egienmode is proportional to λ̃p or,
equivalently, inversely proportional to ηp. Surprisingly, the
exponent p appears to be independent of β, and follows the
relationship

p =
α

α+ 2
. (11)

remarkably well (Fig. 1).
This simple formula can be understood by realizing that for

slow bottleneck dynamics (which is the case for λ̃� 1) those
are the small bottlenecks that retain the ligand for the longest
times (due to K(0) = 0). So systems starting near r = 0 will
decay only after r fluctuates to larger values. The diffusive
motion of r is practically independent of the potential U(r)
as long as U(r) − U(0) � kBT , thus, for short diffusion the
potential can be ignored. Escape will occur near position r∗,
where the escape time 1/K(r∗) = 1/(kr∗α) becomes com-
parable to the characteristic diffusion time r∗2γ/(kBT ) =
r∗2/(λθ) from position 0 to r∗ along a flat potential. Equating
these two times results in

r∗ =

(
λθ

k

)1/(α+2)

, (12)

from which the decay rate is

µ ≈ K(r∗) = k

(
λθ

k

)α/(α+2)

, (13)
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FIG. 1. The numerically obtained values of the exponent p as a
function of α (symbols). The values are independent of β. The data
points follow the curve p = α/(α+ 2) (dashed line).
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providing the anticipated p = α/(α + 2) value for the expo-
nent.

IV. CONCLUSION

We have shown that for passage through a fluctuating bot-
tleneck the long time decay rate is inversely proportional to
the power function of the solvent viscosity with exponent
0 < p < 1, and the exponent is sensitive to the dependence
of the escape rate on the size of the bottleneck for narrow
bottlenecks. This generalized version of Zwanzig’s original
model10 can be applicable to systems with two coupled per-
pendicular reaction coordinates, where only one of the reac-
tion coordinates is directly affected by solvent motion. Ex-
amples include not only ligand motion inside an enzyme, but
also protein conformational changes where an internal part of
the protein slides with respect to the rest of the molecule or,
more generally, a considerable internal reorganization of the
protein occurs.
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