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Chapter 9

k-clique Percolation and Clustering

GERGELY PALLA, DÁNIEL ÁBEL, ILLÉS J. FARKAS,
PÉTER POLLNER, IMRE DERÉNYI and TAMÁS VICSEK∗

We summarise recent results connected to the concept of k-clique percolation.
This approach can be considered as a generalisation of edge percolation with
a great potential as a community finding method in real-world graphs. We
present a detailed study of the critical point for the appearance of a giant k-
clique percolation cluster in the Erdős–Rényi-graph. The observed transition is
continuous and at the transition point the scaling of the giant component with
the number of vertices is highly non-trivial. The concept is extended to weighted
and directed graphs as well. Finally, we demonstrate the effectiveness of k-clique
percolation as a community finding method via a series of real-world applications.

1. Introduction

In recent years there has been a growing interest in the dense, highly
interconnected parts of real-world graphs, often referred to as communities,
modules, clusters of cohesive groups [74, 76, 26, 46, 32, 54, 73, 64]. These
structural subunits can correspond to multi-protein functional units in
molecular biology [70, 78], a set of tightly coupled stocks or industrial
sectors in economy [59, 41], groups of people [74, 85, 63], cooperative players
[80, 84, 79], etc. The location of such building blocks can be crucial to the
understanding of the structural and functional properties of the systems
under investigation.
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Cliques (maximal complete subgraphs, in which every vertex (also re-
ferred to as node) is linked to every other vertex) correspond to the most
dense parts of a network [14, 25, 12, 11], therefore, they serve as an ideal
starting point to search for communities. However, limiting the community
definition to cliques only would be too restrictive in most cases. k-clique
percolation offers a similar, but more flexible alternative for network cluster-
ing [21, 64, 1]. This approach has been proven successful in many applica-
tions ranging from the study of cancer-related proteins in protein interaction
networks [44, 45], through the analysis of stock correlations [41] to the ex-
amination of various social networks [34, 63]. This success has inspired the
extension of the approach to weighted and directed networks as well [27, 67].
In this chapter we overview the recent results connected to this approach.
At this point we note that k-cores are also closely related to the concepts
described above and turned out to be of fundamental importance in the de-
composition of large complex networks as well [13, 75, 22, 33, 23, 17]. In this
approach a graph can be treated as a set of successively enclosed k-cores,
similar to a Russian nested doll (getting denser and denser inside).

As k-clique percolation can be considered to be a generalisation of edge
percolation, it provides a set of very interesting problems in random graph
theory by itself. (The first rigorous mathematical results on this subject
were given recently by Bollobás and Riordan in [15]). One of the most
conspicuous early results in random graph theory was related to the (edge)
percolation transition of the Erdős–Rényi (E-R) uncorrelated random graph
[24, 14]. The various aspects of this classical model remain still of great
interest since such a graph can serve both as a test-bed for checking all sorts
of new ideas concerning complex networks in general, and as a prototype
of random graphs to which all other random graphs can be compared. The
mentioned percolation transition of the E-R graph takes place at p = pc ≡
1/N , where p is the probability that two nodes are connected by an edge
and N is the total number of nodes in the graph. The appearance of a
giant component in a network, which is also referred to as the percolating
component, results in a dramatic change in the overall topological features
of the graph and has been in the centre of interest for other networks as
well.

A similar critical linking probability can be derived for the emergence
of a giant cluster composed of adjacent k-cliques (complete subgraphs of
k nodes) [21, 66]. Naturally, this critical probability grows with increasing
with k, as the conditions for the formations of a k-clique percolation cluster
become more restrictive. Although k-clique percolation is a generalisation
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of edge percolation, it has a couple of unique features, e.g. a node can be
part of several k-clique percolation clusters at the same time, and multiple
order parameters can be defined to describe the percolation transitions,
which show different behaviour at the critical point. These aspects are
detailed in Sect. 2, which is aimed at summarising the most important
results concerning k-clique percolation in the E-R graph. The concept is
extended to weighted and directed networks in Sects. 3–4. Finally, in Sect. 5
we show how k-clique percolation can be applied to community finding and
network clustering.

2. k-clique Percolation in the E-R-graph

We begin with a few definitions laying down the fundamentals of k-clique
percolation [21, 66]:

• k-clique: a complete (fully connected) subgraph of k vertices [14].

• k-clique adjacency: two k-cliques are adjacent if they share k − 1
vertices, i.e., if they differ only in a single vertex.

• k-clique chain: a subgraph, which is the union of a sequence of adja-
cent k-cliques.

• k-clique connectedness: two k-cliques are k-clique-connected, if there
exists at least one k-clique chain containing the two k-cliques.

• k-clique percolation cluster (or component): a maximal k-clique-
connected subgraph, i.e., it is the union of all k-cliques that are k-
clique-connected to a particular k-clique.

The above concept of k-clique percolation can be illustrated by “k-clique
template rolling” (see Fig. 1). A k-clique template can be thought of as an
object that is isomorphic to a complete graph of k nodes. Such a template
can be placed onto any k-clique of the network, and rolled to an adjacent k-
clique by relocating one of its nodes and keeping its other k−1 nodes fixed.
Thus, the k-clique-communities of a graph are all those subgraphs that can
be fully explored by rolling a k-clique template in them but cannot be left by
this template. We note that a k-clique percolation cluster is very much like
a regular edge percolation cluster in the k-clique adjacency graph, where
the vertices represent the k-cliques of the original graph, and there is an
edge between two vertices, if the corresponding two k-cliques are adjacent.
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Fig. 1. Illustration of k-clique template rolling at k = 4. Initially the template is placed
on A–B–C–D (left panel) and it is “rolled” onto the subgraph A–C–D–E (middle

panel). The position of the k-clique template is marked with thick black lines and black
nodes, whereas the already visited edges are represented by thick gray lines and gray

nodes. Observe that in each step only one of the nodes is moved and the two 4-cliques
(before and after rolling) share k − 1 = 3 nodes. At the final step (right panel) the
template reaches the subgraph C–D–E–F , and the set of nodes visited during the

process (A–B–C–D–E–F ) are considered as a k-clique percolation cluster.

Moving a particle from one node of this adjacency graph to another one
along an edge is equivalent to rolling a k-clique template from one k-clique
of the original graph to an adjacent one. Note that a node can be part of
several k-clique percolation clusters at the same time, the simplest example
of this is given by two triangles (k-cliques at k = 3) overlapping in a single
node.

A k-clique percolation cluster fulfilling the above definition is a very good
candidate for a community in real networks. We shall detail this aspect in
Sect. 5. Here we mention that these objects can be considered as interesting
specific cases of the general graph theoretic objects defined in [25, 8] in very
different contexts.

2.1. Derivation of the critical point with heuristic arguments

The threshold probability (critical point) of k-clique percolation in the E-
R random graph can be obtained using the template rolling picture with
the following simple heuristic arguments. At the percolation threshold we
have to require that after rolling a k-clique template from a k-clique to an
adjacent one (by relocating one of its vertices), the expectation value of
the number of adjacent k-cliques, where the template can roll further (by
relocating another of its vertices), be equal to one. The intuitive argument
behind this criterion is that a smaller expectation value would result in
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premature k-clique percolation clusters, because starting from any k-clique
the rolling would quickly come to a halt and, as a consequence, the size
of the clusters would decay exponentially. A larger expectation value, on
the other hand, would allow an infinite series of bifurcations for the rolling,
ensuring that a giant cluster is present in the system. The above expectation
value can be estimated as (k − 1)(N − k − 1)pk−1, where the first term
(k − 1) counts the number of vertices of the template that can be selected
for the next relocation, the second term (N − k − 1) counts the number
of potential destinations for this relocation, out of which only the fraction
pk−1 is acceptable, because each of the new k−1 edges (associated with the
relocation) must exist in order to obtain a new k-clique. For large N , our
criterion can thus be written as

(1) (k − 1)Npk−1
c = 1,

from which we get

(2) pc(k) =
1

[
(k − 1)N

] 1

k−1

for the threshold probability. The subscript “c” throughout this Chapter
indicates that the system is at the percolation threshold (or critical point).
Obviously, for k = 2 the above result agrees with the known percolation
threshold (pc = 1/N) for E-R graphs, because 2-clique connectedness is
equivalent to regular (edge) connectedness.

2.2. Generating function formalism

The above results can be made stronger with the help of the generating
function formalism [66] in a fashion similar to that of [58]. (Note that the
following derivation is still heuristic from a rigorous mathematical point of
view). We first summarise the definition and the most important properties
of the generating functions. If a random variable ξ can take non-negative
integer values according to some probability distribution P(ξ = n) ≡ ρ(n),
then the corresponding generating function is given by

Gρ(x) ≡ 〈xξ〉 =
∞∑

n=0

ρ(n)xn.(3)
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The generating-function of a properly normalised distribution is absolutely
convergent for all |x| ≤ 1 and hence has no singularities in this region. For
x = 1 it is simply

Gρ(1) =
∞∑

n=0

ρ(n) = 1.(4)

The original probability distribution and its moments can be obtained from
the generating-function as

ρ(n) =
1

n!

dnGρ(x)

dxn

∣∣∣∣
x=0

,(5)

〈ξl〉 =
∞∑

n=0

nlρ(n) =

[(
x

d

dx

)l

Gρ(x)

]

x=1

.(6)

And finally, if η = ξ1 + ξ2 + · · · + ξl, where ξ1, ξ2, . . . , ξl are independent
random variables (with non-negative integer values), then the generating
function corresponding to P(η = n) ≡ σ(n) is given by

Gσ(x) = 〈xη〉 =
〈
xξ1xξ2 · · ·xξl

〉
=
〈
xξ1
〉〈

xξ2
〉
· · ·
〈
xξl
〉

(7)

= Gρ1
(x)Gρ2

(x) · · ·Gρl
(x).

Now, we can proceed to the derivation of the critical point in the N →∞
limit. First, let us consider the probability distribution r(n) of the number
of k-cliques adjacent to a randomly selected k-clique. Finding a k-clique
B adjacent to a selected k-clique A is equivalent to finding a node outside
A linked to at least k − 1 nodes in A. The number of possibilities for this
node is N − k. Edges in the E-R graph are independent of each other,
therefore the probability that a given node is linked to all nodes in A is pk,
whereas the probability that it is linked to k− 1 nodes in A is k(1− p)pk−1.
Therefore, to leading order in N the average number of k-cliques adjacent
to a randomly selected one is

〈r〉 = (N − k)
[
k(1− p)pk−1 + pk

]
' Nkpk−1.(8)

From the independence of the edges it also follows that the probability
distribution r(n) becomes Poissonean, which can be written as

r(n) = exp (−Nkpk−1)
(Nkpk−1)

n

n!
.(9)
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Let us suppose that we are below the percolation threshold, therefore,
k-cliques are rare, adjacent k-cliques are even more rare, and loops in the
k-clique adjacency graph are so rare that we can assume it to be tree-like1.
In this case the size of a connected component in the k-clique adjacency
graph (corresponding to a k-clique percolation cluster) can be evaluated by
counting the number of k-cliques reached in a branching process as follows.
We start at an arbitrary k-clique in the component, and in the first step
we invade all its neighbours in the k-clique adjacency graph. From then on,
whenever a k-clique is reached, we proceed by invading all its neighbours,
except for the one the k-clique has been reached from. In terms of the
original graph, this is equivalent to rolling a k-clique template to all adjacent
k-cliques except for the one we arrived from in the previous step.

In the process described above, we can assign to each k-clique the
subgraph in the k-clique percolation cluster that was invaded from it. (Note
that we assumed the k-clique adjacency graph to be tree-like). Let us denote
by I(n) the probability, that the subgraph reached from an arbitrary starting
k-clique in the branching process contains n number of k-cliques, including
the starting k-clique as well. This subgraph is actually equal to a k-clique
percolation cluster. Similarly, let H(n) denote the probability that the
subgraph reached from a k-clique appearing later in the branching process
(i.e., from a k-clique that is not the starting one) contains n number of k-
cliques. This is equivalent to the probability that by starting at a randomly
selected k-clique and trying to roll a k-clique template via all possible subsets
of size k−1 except for one, then by subsequently rolling the template on and
on, in all possible directions without turning back, a k-clique percolation
“branch” of size n is reached. And finally, let Hm(n) be the probability,
that if we pick m number of k-cliques randomly, then the sum of the sizes
of the k-clique branches that we can reach in this way consists of n number
of k-cliques. Since we are below the percolation threshold, the k-clique
adjacency graph consists of many dispersed components of small size, and
the probability that two (or more) k-cliques out of m belong to the same
k-clique percolation cluster is negligible. Hence, according to Eq. (7), the
generating functions corresponding to H(n) and Hm(n), denoted by GH(x)
and GHm

(x) respectively are related to each other as:

GHm
(x) =

[
GH(x)

]m
.(10)

1This assumption is an approximation since the adjacency graph is weakly assortative.
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Let q(n) denote the probability, that for a randomly selected k-clique,
by excluding one of its possible subsets of size k − 1, we can roll a k-
clique template through the remaining subsets to n adjacent k-cliques. This
distribution is very similar to r(n), except that in this case we can use only
k−1 subsets instead of k in the k-clique to roll the k-clique template further,
therefore

q(n) = exp
(
−N(k − 1)pk−1

) (N(k − 1)pk−1
)n

n!
.(11)

By neglecting the loops in the k-clique adjacency graph, Hn can be expressed
as

H(n) = q(0)H0(n− 1) + q(1)H1(n− 1) + q(2)H2(n− 1) + . . . .(12)

By taking the generating function of both sides and using Eqs. (5) and (10),
we obtain

GH(x) =
∞∑

n=0

[ ∞∑

m=0

q(m)Hm(n− 1)

]
xn(13)

=
∞∑

n=0

[
∞∑

m=0

q(m)
1

(n− 1)!

dn−1

dxn−1

[
GH(x)

]m
∣∣∣∣
x=0

]
xn =

=
∞∑

m=0

q(m)
[
GH(x)

]m
x = xGq

(
GH(x)

)
,

where Gq(x) denotes the generating function of the distribution q(n).

We can write an equation similar to Eq. (12) for I(n) as well, in the
form of

I(n) = r(0)H0(n− 1) + r(1)H1(n− 1) + r(2)H2(n− 1) + . . .(14)

Again, by taking the generating functions of both sides we arrive at

GI(x) = xGr

(
GH(x)

)
,(15)

where Gr(x) denotes the generating function of r(n). From Eqs. (6) and
(15) we get

〈I〉 = G′
I(1) = Gr

(
GH(1)

)
+ G′

r

(
GH(1)

)
G′

H(1) = 1 + G′
r(1)G

′
H(1)(16)
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for the average size of the components invaded from a randomly selected
k-clique. Using Eq. (13) we can write

G′
H(1) = Gq

(
GH(1)

)
+ G′

q

(
GH(1)

)
G′

H(1) = 1 + G′
q(1)G

′
H(1),(17)

from which G′
H(1) can be expressed as

G′
H(1) =

1

1−G′
q(1)

.(18)

By substituting this back into Eq. (16) we get

〈I〉 = 1 +
G′

r(1)

1−G′
q(1)

= 1 +
〈r〉

1− 〈q〉 .(19)

The above expression for the expected size of the connected components
in the k-clique adjacency graph invaded from a randomly selected k-clique
diverges when

〈q〉 = N(k − 1)pk−1 = 1.(20)

This point marks the phase transition at which a giant component (corre-
sponding to a giant k-clique percolation cluster) first appears. Therefore,
our final result for the critical linking probability for the appearance of the
giant reassures Eq. (2), found via heuristic arguments.

2.3. Partial differential equation approach to k-clique percolation

The critical point of k-clique percolation was studied in a more general
framework by Ráth and Tóth [69]. (Similarly to Sects. 2.1–2.2., the results
of this Section are based on heuristics and do not provide rigorous proofs in
the mathematical sense). In this approach the E-R graph is constructed in a
stochastic process: from an initially empty graph containing only nodes but
no edges, the possible edges are introduced at a rate of 1/

√
N . At time t,

the ratio of “occupied” edges equals 1− e−t/
√

N , therefore, for N →∞ the
resulting graph at any time t is equivalent to an E-R graph with a linking
probability p = t/

√
N .

The above model can be naturally extended by replacing the initial state
with a non-empty graph. The method used by Ráth and Tóth to derive pc
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for this general case was based on partial differential equations (PDE) and
can be applied to arbitrary initial component size distribution. However,
the initial state must fulfil the following conditions:

• If a small subset of edges is selected, then the distribution of the sizes
of the percolation clusters of these edges is asymptotically indepen-
dent from the probability distribution of the sizes of the rest of the
percolation clusters as N →∞.

• The k-clique percolation clusters of the initial graph correspond to
trees of the k-clique adjacency graph.

The starting point of this method is the approximation of the change in
the number of k-clique percolation clusters having a given number of edges
m between time t and t + dt. Although this approach can be generalised to
higher k in a straightforward way, Ráth and Tóth focused exclusively on the
k = 3 case. By denoting the number of k-clique percolation clusters with
m edges at time t by Cm(N, t), they introduced the following quantities:

cm(t) ≡ lim
N→∞

Cm(N, t)
1
2N

3

2

,(21)

vm(t) ≡ m · cm(t).(22)

The Laplace-transforms of cm(t) and vm(t) are given by

V (t, x) ≡
∑

m∈N

vm(t) · e−m·x,(23)

C(t, x) ≡
∑

m∈N

cm(t) · e−m·x.(24)

By introducing

(25) E(t) ≡ lim
N→∞

∣∣E(N, t)
∣∣

1
2N

3

2

,

Ráth and Tóth showed that in the mean-field approximation and in the
N →∞, dt→ 0 limits the C(t, x) satisfies the following PDE:

(26)
∂

∂t
C(t, x) = eV (t,x)2−E(t)2−x − 2V (t, x) · E(t)2.
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Equation (26) was solved with the method of characteristics [69], result-
ing in the following expression:

(27) t2c · (2ab + 1) + tc ·
(
b + a · (2ab + 1)

)
=

1

2
,

where a = V (0, 0) =
∑

m vm(0), b = − ∂
∂xV (0, 0) and tc denotes the time of

the appearance of the giant k-clique percolation cluster. In the special case
of an empty initial graph a = b = 0, yielding tc = 1/

√
2 and

(28) pc =
tc√
N

=
1√
2N

,

in agreement with the results of Sect. 2.1. From Eq. (26) Ráth and Tóth also
derived an equation for the rescaled size of the giant component (number
of links compared to the total number of links), denoted by v∞(t). By
introducing

W (t, x) ≡ eV (t,x)2−E(t)2−x,(29)

V̂ (t, w) ≡ V
(
t, X̂(t, w)

)
,(30)

where X̂(t, w) denotes the inverse function of W (t, x) in the x variable, this
equation was formulated as [69]

(31) v∞(t) = V̂ (0, 1) + t− V̂
(
0, W (t, 0)

)
− tW (t, 0).

2.4. Numerical simulations

The numerical studies of k-clique percolation in the E-R graph are in full
agreement with the results obtained in Sects. 2.1–2.2. The observed transi-
tion is continuous, characterised by non-universal critical exponents, which
depend on both k and the way the size of the giant component is measured.
There are two plausible choices for measuring the size of the giant com-
ponent: The most natural one, which we denote by N ∗, is the number of
vertices belonging to this cluster. We can also define an order parameter
associated with this choice as the relative size of that cluster:

(32) Φ = N∗/N.
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The other choice is the number N ∗ of k-cliques of the largest k-clique per-
colation cluster (or equivalently, the number of vertices of the largest com-
ponent in the k-clique adjacency graph). The associated order parameter is
again the relative size of this cluster:

(33) Ψ = N
∗/N ,

where N denotes the total number of k-cliques in the graph (or the total
number of vertices in the adjacency graph). N can be estimated as

(34) N ≈
(

N

k

)
pk(k−1)/2 ≈ Nk

k!
pk(k−1)/2,

because k different vertices can be selected in
(
N
k

)
different ways, and any

such selection makes a k-clique only if all the k(k − 1)/2 edges between
these k vertices exist, each with probability p. Note that the classical E-R
percolation is equivalent to our k = 2 case, and the E-R order parameter
(relative number of nodes) is identical to Φ. Also note that in general the
size of the largest cluster could be measured as the number of its l-cliques,
N ∗

(l), for 1 ≤ l ≤ k. However, for simplicity we restrict ourselves to the two

limiting cases (N∗ ≡ N ∗
(1) and N ∗ ≡ N ∗

(k)) defined above.

Fig. 2. (a) Simulation results for the order parameter Φ as a function of p/pc(k) at
k = 4, averaged over several runs, such that the statistical error is smaller than the size

of the symbols. Φ converges to a step function in the N → ∞ limit. (b) The order
parameter Ψ as a function of p/pc(k) for the same simulations as in (a). Ψ converges to

a limit function (which is 0 for p/pc(k) < 1 and grows continuously to 1 above
p/pc(k) = 1) in the N → ∞ limit. Figure from [21]

Computer simulations indicate that the two order parameters behave
differently near the threshold probability. To illustrate this, in Figs. 2. we
plotted Φ and Ψ, respectively, as a function of p/pc(k) for k = 4 and for
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various system sizes (N), averaged over several runs. The order parameter
Φ for k ≥ 3 converges to a step function as N →∞. The fact that the step
is located at p/pc(k) = 1 is actually the numerical proof of the validity of
the theoretical prediction (2) for pc(k). The order parameter Ψ for k ≥ 2,
on the other hand, similarly to the classical E-R transition, converges to a
limit function, which is 0 for p/pc(k) < 1 and grows continuously from 0 to
1 if we increase p/pc(k) from 1 to∞. The limiting shape of this curve (with
proof) is given in [15].

The width of the steps in Fig. 2. follows a power law, ∼ N−α, with some
exponent α. Plotting Φ as a function of

[
p/pc(k) − 1

]
Nα, i.e., stretching

out the horizontal scale by Nα, the data collapse onto a single curve. This
is shown for k = 3, 4, and 5 in Fig. 3a. The exponent α is around 0.5 for
every k ≥ 3. Although for k = 3 a slight deviation from α = 0.5 has been
obtained, it cannot be distinguished from a possible logarithmic correction.

One of the most fundamental results in random graph theory concerns
the behaviour of the largest component at the percolation threshold, where
it becomes infinitely large in the N → ∞ limit. Erdős and Rényi showed
[24] that for the random graphs they introduced, the size of the largest
component N∗ (measured as the number of its nodes) at p = pc ≡ 1/N
diverges with the system size as N 2/3, or equivalently, the order parameter
Φ scales as N−1/3. A similar scaling behaviour can be observed for k-clique
percolation at the threshold probability pc(k) as well. If we assume, that
the k-clique adjacency graph is like an E-R graph, then at the threshold

the size of its giant component N ∗
c scales as N

2/3
c . Plugging p = pc from

Eq. (2) into Eq. (34) and omitting the N -independent factors we get the
scaling

(35) Nc ∼ Nk/2

for the total number of k-cliques. Thus, the size of the giant component

N ∗
c is expected to scale as N

2/3
c ∼ Nk/3 and the order parameter Ψc as

N
2/3

c /Nc ∼ N−k/6.

This is valid, however, only if k ≤ 3. The reason for the breakdown
of the above scaling is that for k > 3 it predicts that the number of k-
cliques of the giant k-clique percolation cluster, i.e., the number of vertices

of the giant component in the k-clique adjacency graph, N
2/3

c ∼ Nk/3,
grows faster than N . On the other hand, in analogy with the structure
of the giant component of the classical E-R problem, we expect that the
giant component in the adjacency graph also has a tree-like structure at
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Fig. 3. (a) The width of the steps in Fig. 2a follows a power law, ∼ N−α, as the steps
collapse onto a single curve if we stretch them out by Nα horizontally. We have plotted

the results obtained at k = 3 and k = 5 as well. The data for k = 4 and k = 5 are
shifted upward by 0.4 and 0.8, respectively, for clarity. (b) The order parameter at the

threshold, Ψc, scales as some negative power of N , in good agreement with
expression (36). Figure from [21].

the threshold, with very few loops. As a consequence, almost every node
of the adjacency graph corresponds to a node of the original graph. Thus,
in the adjacency graph the giant component should not grow faster than N
at the threshold. Therefore, for k > 3 we expect that N ∗

c ∼ N , and using
Eq. (35), Ψc = N ∗

c /Nc ∼ N1−k/2. In summary:

(36) Ψc ∼
{

N−k/6 for k ≤ 3

N1−k/2 for k ≥ 3
.

Numerical results showing the scaling of Ψc at pc as a function of N are
depicted in Fig. 3b, and the results are in good agreement with the above
arguments.
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3. Percolation of Weighted k-cliques

As mentioned in the introduction, k-clique percolation is important from
the point of view of community finding, as k-clique percolation clusters
can be considered as dense communities. For the majority of the networks
occurring in nature and society, the edges connecting the nodes have an
associated weight as well, referring to the strength/intensity of the relation
between its endpoints.

Plain k-clique percolation can be used even in these cases, as described
in Sect. 5.1, on a truncated graph that contains only those edges that have a
weight higher than a given threshold. However, a method that incorporates
edge weights is expected to produce better results. Thus, we suggest a
generalisation of clique percolation to weighted networks [27]. For binary
graphs, using percolating k-clique clusters instead of only full cliques is a
less restrictive approach that highlights extended, less dense regions of the
graph. In the same way, our aim when defining weighted clique percolation
is to introduce concepts that can be used to examine those parts of the
graph that are denser than a given lower limit.

3.1. Definitions

In a weighted network, to each edge, (i, j), a weight wij ∈ R is assigned.
The intensity of a k-clique C is defined as the geometric mean of its edge
weights [62]:

I(C) =

(
∏

i<j
i,j∈C

wij

)2/[k(k−1)]

.

Compared to unweighted k-clique percolation clusters, we define
weighted k-clique percolation clusters by considering only k-cliques having
an intensity greater than a given threshold I. In analogy with the definition
of k-clique adjacency, a weighted k-clique chain is a k-clique chain where
the intensity of all cliques is above I.

Compared to k-clique percolation on the truncated graph, the above
definition is less restrictive: a k-clique containing weak edges (low weights)
can be part of the percolation cluster if it contains a considerable number
of strong (large weights) edges as well.
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3.2. Percolation transition in the weighted E-R graph

To define a weighted version of the E-R graph, we assign to each edge of this
graph a weight selected independently and randomly from a uniform distri-
bution on the interval (0, 1]. At a fixed I, the critical linking probability,
pc(I), of k-clique percolation is the edge probability where a giant module
(containing k-cliques fulfilling the intensity condition) emerges. The special
case I = 0 is equivalent to the unweighted case.

The results derived in Sect. 2. for unweighted clique percolation provide
an upper limit for pc in a weighted E-R graph. Consider weighted E-R
graph as defined above, remove edges weaker than I and ignore the weights
of the remaining edges. The resulting graph will an E-R graph with link
probability p∗ = p(1 − I). The (unweighted) k-cliques of this truncated
graph are a subset of those weighted k-cliques of the original graph which
pass the intensity threshold, resulting in a higher percolation threshold.
This gives the upper limit pc(I) < pc(0)/(1− I).

A better approximation can be given by modifying the heuristic argu-
ment considered in Sect. 2.1. by taking into account the intensities of the
cliques. We keep the main idea (a k-clique template is rolled and percola-
tion of the k-cliques is required) and modify only the condition for rolling
the template further. In the process of rolling if a k-clique C1 precedes an-
other k-clique C2, then we will say that C1 is the parent of C2, and C2 is a
child of C1. The k-clique template can be rolled from parent to child, if the
child k-clique passes the intensity threshold I.

We consider two approximations for this. First we assume that the prob-
ability distribution of edge weights in the child k-cliques is the original uni-
form distribution on the interval (0, 1]. (The actual probability distribution
of an edge weight is different from this, as we shall see shortly.) Denoting
by Pk < 1 the probability that the child k-clique has an intensity larger
than I, the expected number of cliques available for the template to roll to
is pk−1N(k− 1)Pk. Applying the criterion for percolation, i.e. that the ex-

pectation value of this number should be 1, we get pc(I) ' pc(0) P
−1/(k−1)
k .

The probability Pk is simply the probability that the product of
k(k − 1)/2 independent random variables, with uniform distribution on
(0, 1], reaches Ik(k−1)/2, and can be expressed with straightforward but te-
dious integrals.

As noted above, the probability distribution of the edge weights in the
child k-cliques is not the original uniform distribution: the parent clique has
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Fig. 4. Numerical analysis of the percolation of k-cliques fulfilling the intensity condition
in weighted E-R graphs. The sample numerical results shown in panels (a-c) were
obtained for N = 100 and k = 3 using 1 run for each (p, I) grid point. In panel (d)

points were computed from 3 to 100 runs for each (k, I) parameter pair and error bars
are smaller than the sizes of the symbols. (a) The order parameter, Φ, in the points of a
grid on the (k, I) plane. (b) We computed the transition line, pc = pc(I), as the curve

with Φ = 1/2 on the (k, I) plane. From the values of Φ at nearby grid points we
increased the precision of the transition line with linear interpolation. (c) Numerical

curve for the percolation threshold and the second order analytical approximation. The
area between the two curves, D, measures the difference between the two results.

(d) Difference between the numerical and analytical results for pc(I) at various system
sizes, N , and clique size parameters. Figure from [27].

an intensity above I, and it shares (k− 1)(k− 2)/2 edges with candidate k-
cliques. With an appropriate simplifying approximation for the probability
distribution of edge weights of the parent clique, one can calculate a second-
order approximation for pc. Higher-order approximations can be generated
by taking into account the probability distribution of the edge weights of
the grandparent clique, grand-grandparent clique and so on.

To numerically check our results, we generated weighted E-R networks
of size N = 10 . . . 400, and measured pc(I) in the following way (see Fig. 4):
we calculated the order parameter Φ, as defined in Eq. (32) on a square
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grid, and approximated the points where Φ = 1/2 by linear interpolation
along the grid-lines. The algorithm we used exploited the fact that, for
a given initial random seed, one can reuse the cluster structure at (p1, I1)
for calculating the cluster structure at a different (p2, I2), using a Hoshen–
Kopelman (also known as Union-Find) algorithm.

4. Directed k-clique Percolation

In practice many real networks contain directed connections among the ver-
tices, where the direction of a single link signals either the direction of some
kind of flow (e.g. the flow of information, energy), or the asymmetry of the
relation between the vertices (e.g. a superior-inferior relation). This raises
the question of whether a community searching algorithm that inherently
takes into account the directionality of links is more suitable for directed
networks than the usual undirected algorithms. Along this idea, in this sec-
tion we define the notion of directed k-cliques (in which the configuration of
the directed links has to meet certain criteria), and study the percolation
of these objects in the directed equivalent of the E-R graph [67].

4.1. Definitions

In undirected graphs a pair of nodes is either connected or not, whereas
in a directed graph the same pair, (A, B), can be connected in three ways:
either by a “single link” as (i) A→ B and (ii) A← B or by a “double link”
as (iii) A 
 B. Multiple links (i.e., more than one link between A and B in
the same direction) and self-links (such as A→ A) are not allowed.

In a complete subgraph of size k the k(k − 1)/2 links can be directed
in 3k(k−1)/2 ways. Since in the undirected k-clique percolation we treat
these alternatives as identical, introducing link directions allows a large
variety of possible rules for defining directed k-cliques. A natural concept,
however, is to aim for objects preserving some kind of directedness as a
whole, rather than just being a collection of nodes connected by directed
links. Therefore, we define directed k-cliques as complete subgraphs of size
k in which an ordering can be made such that between any pair of nodes
there is a directed link pointing from the node with the higher order towards
the lower one. Since the presence of double links usually leads to multiple
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Fig. 5. Groups of nodes forming a directed k-clique (a, c) and groups (b, d) that do
not. (a) A directed k-clique without double links. The index of each node corresponds

to its order (equivalent to the number of its out-links) within the directed k-clique.
(b) A complete subgraph without double links, but not accepted as a directed k-clique,

because it contains a directed loop. (c) A directed k-clique with a double link. Note
that the order of the nodes depends on which link is deleted from the double link.

(d) Double link in a complete subgraph that is not a directed k clique. It is not possible
to remove a link from the double link in a way that all directed loops disappear.

possibilities to order the nodes in a way fulfilling the above requirement, for
simplicity we first concentrate on directed k-cliques without double links.
In this case, the higher the order of a node, the more out-neighbours it has
in the k-clique (see illustration in Fig. 5a). Thus, the restricted out-degree
of a node in the k-clique (the number of its out-neighbours in the k-clique,
ranging from 0 to k − 1) can be assigned as its order. From this, it can
be seen easily (for details see Appendix of [67]) that the condition for a k-
clique with no double links to qualify as a directed k-clique is equivalent to
the following three conditions:

• Any directed link in the k-clique points from a node with a higher
order (larger restricted out-degree) to a node with a lower order.

• The k-clique contains no directed loops (where a “directed loop” is a
closed directed path).

• The restricted out-degree of each node in the k-clique is different.

The overall directionality of such an object naturally follows the ordering
of the nodes: the node with highest order is the one which has only out-
neighbours, and can be viewed as the “source” or “top”-node of the k-clique,
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whereas the node with lowest order has only incoming links from the others,
and corresponds to a “drain” or “bottom” node.

None of the above three conditions holds in the presence of double links:
directed loops appear in the k-clique, the restricted out-degree of at least two
nodes in the k-clique become the same (see Appendix of [67]), and we can
find directed links pointing in the direction of increasing order. However,
based on the ordering of the nodes, it is always possible to eliminate the
double links (by removing all links that point towards higher order) from
a directed k-clique in such a way that the remaining single links fulfil all
three conditions. See Fig. 5c as an example.

The k-clique adjacency is defined similarly to the undirected case: two
directed k-cliques are adjacent if they share k − 1 nodes. The directed k-
clique percolation clusters arise as the union of directed k-cliques that can
be reached from each other through a series of k-clique adjacency. The k-
clique template rolling picture can be applied to illustrate these clusters in
the same fashion as in the undirected case. The directed k-clique percolation
clusters provide a community definition for real networks in a similar fashion
to the undirected case (see Sect. 5. for details).

4.2. Percolation transition in the directed E-R graph

The directed equivalent of the E-R graph consists of N nodes providing
N(N − 1) possible “places” for the directed links, and these are filled inde-
pendently with uniform probability p, producing on average M ' N(N−1)p
links. (Note that in the original undirected E-R graph there are only
N(N − 1)/2 possibilities to introduce an edge, therefore, at linking proba-
bility p, there are only M ' N(N − 1)p/2 connections). In the following
we shall evaluate the critical linking probability, pdir

c , for directed k-clique
percolation using similar heuristic arguments as in Sect. 2.1.

pdir
c is decreasing with increasing N , and converges to zero as N → ∞.

We restrict ourselfs to the large N limit, and evaluate pdir
c to leading order

only. Let us suppose that we approach the critical point from below: the
directed k-cliques do not assemble yet into a giant cluster and we can find
only small, isolated clusters, i.e. the system is dispersed. In our k-clique
template rolling picture this means that when trying to explore the directed
percolation clusters by rolling such a template on them, we must stop the
rolling after a few steps as we run out of unexplored adjacent directed k-
cliques.
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One can estimate pdir
c from the condition that at the critical point the

average number of yet unexplored directed k-cliques adjacent to the k-clique
we have just reached becomes equal to one. (This makes it possible to roll
our template on and on for a long time). Since we are going to evaluate
pdir
c to leading order only, we can neglect the possibility to roll our k-clique

template using double links between the same nodes: When reaching a
directed k-clique, the minimal number of further links that must be present
to enable the continuation of the template rolling is k−1. The probability of
such a case is therefore proportional to pk−1. Even though it is not forbidden
in the first place to continue using double links as well, each double link in
the new directed k-clique we are going to roll onto multiplies the probability
by p. In other words, the probability to roll further to a k-clique containing
one double link is smaller by a factor of p, the probability to roll further to
a k-clique containing two double links is smaller by a factor of p2, etc.

Consider the branching process exploring a directed k-clique percolation
cluster at the point when we are about to roll our template further on. We
can choose the next node for relocation in k − 1 different ways, which can
then be relocated to approximately N places. If there were no restrictions
for directing the links inside a directed k-clique, then the k − 1 new links
connecting the new node to this k − 1 shared nodes could be directed
in 2k−1 ways. However, the new directed k-clique has to fulfil the three
conditions detailed in Sect. 4.1. as well, therefore the actual number of
allowed configurations is much smaller. The rank of the new node in the
new directed k-clique can be chosen in k ways. The k − 1 nodes shared
with the previous k-clique are already ordered, and we can “insert” the new
node anywhere into this hierarchy. By fixing the order of the new node we
fix the direction of the new links as well, therefore, we can allow only k
different configurations for the directionality of these links. By combining
these factors together, the condition for reaching the critical point of the
percolation transition can be written as

[
pdir
c

]k−1
N(k − 1)k = 1,(37)

from which we gain

pdir
c =

[
Nk(k − 1)

]−1/(k−1)
= pc/k

1/(k−1)(38)

as a first order approximation for the critical linking probability. Note that
in the limiting case of k = 2 (the directed link percolation), the pdir

c = pc/2
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relation holds, which is consistent with the 2 : 1 ratio for the number of
links in the directed and undirected E-R graph, respectively.

To measure the size of the largest directed k-clique percolation cluster
we can use Φ and Ψ, defined in Eqs. (32–33), in complete analogy with
the undirected case. In Figs. 6a–b we display Φ and Ψ as functions of
p/pdir

c obtained in numerical simulations, where the directed k-clique size
was k = 4, and the system size varied between N = 50 and N = 1600.
Similarly to the undirected k-clique percolation, the order parameter Φ
converges to a step function for increasing system sizes, whereas Ψ converges
to a limit function (which is 0 for p/pc(k) < 1 and grows continuously to 1
above p/pc(k) = 1). We have evaluated the transition point numerically
as well, by computing the second moment of the distribution of Ni values,
excluding the largest one, N1 = N ∗:

χ =
∑

i>1

(Ni/N )2.(39)

Note that this quantity is analogous to the percolation susceptibility. Both
below and above the transition point the Ni (i > 1) values follow an expo-
nential distribution, and only at pc do they have a power-law distribution.
Thus, χ is maximal at the numerical transition point, pnum

c . In Fig. 6c we
show χ calculated for the curves shown in Fig. 6b, as a function of p/pdir

c .
In order to check the theoretical prediction for the critical point obtained
in (38) we have carried out a finite-size scaling analysis of the numerical re-
sults. In Fig. 6d we show the ratio pnum

c /pdir
c as a function of 1/N . Indeed,

for large systems, the above ratio converges to 1 roughly as 1 + cN−1/2.

5. Applications: Community Finding and Clustering

The study of the intermediate-scale substructures in networks, made up
of vertices more densely connected to each other than to the rest of the
network, has become one of the most highlighted topics in complex network
theory. A reliable method to pinpoint such objects has many potential
industrial applications, e.g. it can help service providers (phone, banking,
Internet, etc.) identify meaningful groups of customers (users), or support
biomedical researchers in their search for individual target molecules and
novel protein complex targets [47, 4]. Since communities have no widely
accepted unique definition, the number of available methods to pinpoint
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Fig. 6. Numerical results for directed k-clique percolation in ER-graphs. In each
sub-figure, points show an average over 4 to 100 simulations depending on system size.

a) The order parameter Φ (the number of nodes in the largest percolation cluster
divided by N) as a function of p/pdir

c , where pdir

c was obtained from Eq. (38). b) The
order parameter Ψ (the number of directed k-cliques in the largest percolation cluster

divided by the total number of directed k-cliques) as a function of p/pdir

c . c) The
numerically determined value for the critical linking probability, pnum

c , defined as the
average location of the maximum of χ(p), playing the role of the normalised percolation
susceptibility (see Eq. 39). d) Verification of the theoretical prediction for the critical

point. The pnum

c /pdir

c ratio converges to 1 for large N . Figure from [67].

them is vast [74, 76, 26, 46, 32, 54, 73, 64, 27, 67, 71, 72, 37, 36, 38, 52]. The
majority of these algorithms classify the nodes into disjoint communities,
and in most cases a global quantity called modularity [56, 55] is used to
evaluate the quality of the partitioning. However, as pointed out in [29, 49],
the modularity optimisation introduces a resolution limit in the clustering,
and communities containing a smaller number of edges than

√
M (where M

is the total number of edges) cannot be resolved. One of the big advantages
of the clique percolation method (CPM) is that it identifies communities as
k-clique percolation clusters, and therefore, the algorithm is local, and does
not suffer from resolution problems of this type [64, 21].
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Along with the rapid development of network clustering techniques, the
ability of revealing overlaps between communities has become very impor-
tant as well [86, 9, 39, 83, 31, 89, 57, 71, 52]. Indeed, communities in real-
world graphs are often inherently overlapping: each person in a social web
belongs usually to several groups (family, colleagues, friends, etc.), proteins
in a protein interaction network may participate in multiple complexes [39]
and a large portion of webpages can be classified under multiple categories.
Prohibiting overlaps during module identification strongly increases the per-
centage of false negative co-classified pairs. As an example, in a social web
a group of colleagues might end up in different modules, each corresponding
to e.g. their families. In this case, the network module corresponding to
their workgroup is bound to become lost. The other big advantage of CPM
beside its local nature is that it allows overlaps between communities in a
natural way: a node can be part of several k-clique percolation clusters at
the same time.

5.1. The CPM in practice

In principle, the CPM detailed in Sect. 2 can be only applied to binary net-
works (i.e. to those with undirected and unweighted connections). However,
an arbitrary network can always be transformed into a binary one by ignor-
ing any directionality in the connections and keeping only those connections
that are stronger than a threshold weight w∗. Changing the threshold is
similar to changing the resolution (as in a microscope) with which the com-
munity structure is investigated: by increasing w∗ the communities start
to shrink and fall apart. A very similar effect can be observed by chang-
ing the value of k as well: increasing k makes the communities smaller and
more disintegrated, but at the same time, also more cohesive. When we
are interested in the community structure around a particular node, it is
advisable to scan through a ranges of k and w∗ values and monitor how the
communities change. Meanwhile, when analysing the modular structure of
the entire network, the criterion used to fix these parameters is based on
finding a modular structure as highly structured as possible [64]. This can
be achieved by tuning the parameters just below the critical point of the
percolation transition. In this way we ensure that we find as many modules
as possible, without the negative effect of having a giant module that would
smear out the details of the modular structure by merging (and making
invisible) many smaller modules.
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The edge weights can be also taken into account in a somewhat refined
way when using weighted k-cliques (fulfilling an edge-weight intensity cri-
terion), as described in Sect. 3. This approach is referred to as the CPMw
method [27], and the optimal k-clique intensity threshold can be adjusted
similarly to the calibration of the optimal edge weight threshold described
above.

The directed k-clique percolation clusters defined in Sect. 4 provide a
suitable community definition for directed networks (this is the CPMd
method [67]). Due to the asymmetry of the directed connections, nodes
with mostly incoming links are expected to play a very different role in a
given community from those having mostly outgoing links or from those
having a similar amount of both kinds of links. A member (node) having
only out-neighbours amongst the others can be viewed as a “source” or a
“top-node”, whereas a node with only incoming links from the rest of the
community is a “drain” or a “bottom-node”. Most nodes, however, fall
usually somewhere between these two extremes. To quantify this property,
we can introduce the relative in-degree and relative out-degree [67] of node
i in a community α as

Dα
i,in ≡

dα
i,in

dα
i,in + dα

i,out

,(40)

Dα
i,out ≡

dα
i,out

dα
i,in + dα

i,out

,(41)

where dα
i,in and dα

i,out denote the numbers of in- and out-neighbours amongst
the other nodes in the community, respectively. Obviously, the values of
both Dα

i,out and Dα
i,in are in the range between 0 and 1, and the relation

Dα
i,in+Dα

i,out = 1 holds. For weighted networks, Eqs. (40, 41) can be replaced
by the relative in-strength and relative out-strength defined as

Wα
i,in ≡

wα
i,in

wα
i,in + wα

i,out

,(42)

Wα
i,out ≡

wα
i,out

wα
i,in + wα

i,out

,(43)

where wα
i,out and wα

i,out denote the aggregated weight of outgoing and incom-
ing connections with other nodes in the community α. As an illustration,
in Fig. 7. we show the directed communities of the word “GOLD” in a
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word association network studied in [67]. The weight of a directed link in
this case indicates the frequency at which people in questionnaires associ-
ated the endpoint of the link with its starting point. The communities are
colour coded with the overlaps emphasised in red. According to its differ-
ent meanings, the word “GOLD” participates in four, strongly internally
connected communities. Beside the node labels we display the relative out-
strength of the nodes in the communities using Eq. (43). Apparently, nodes
with a special/particular meaning (e.g. “SAPPHIRE”) tend to have high
relative out-strength, whereas commonly used words with general meaning
(e.g. “MONEY”) have low relative out-strength. Thus, it seems that the
overall directionality of the communities in this case is from special words
towards more general words.

Fig. 7. The directed modules of the word “GOLD” in a word association network. The
modules are colour coded and the overlaps between the modules are displayed in red.

The size of each node is proportional to the number of modules it participates in (some
of them are not shown in this figure). Beside the name of the nodes we display their

W α
i,out = wα

i,out/(wα
i,in + wα

i,out) values as well. Nodes with high W (e.g. “SAPPHIRE”)
usually correspond to special, rarely used words, whereas nodes with low relative

out-degree (e.g. “MONEY”) are very common. Figure from [67].
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5.2. Applying the CPM to real networks

In this section we summarise the most important results obtained so far with
the help of the CPM in the analysis of real networks. These achievements
are related to a wide spectrum of problems, ranging from cancer metastasis
through the formation of social groups to the study of the directed commu-
nities of webpages. Here we focus solely on the results closely related to the
CPM in the cited works.

5.2.1. The graph of communities. As we already pointed out, one of the
big advantages of the CPM is that it allows overlaps between the communi-
ties. These overlaps naturally lead to the definition of the community graph
[64, 68]: a network representing the connections between the communities,
with the nodes referring to communities and edges corresponding to shared
members between the communities of the original graph. The community
graph can be treated as a “coarse-grained” view of the original network, and
can be used to study the organisation of the system at a higher level. As an
illustration, in Fig. 8. we show the community graph of the protein-protein
interaction (PPI) network obtained from the DIP core list of protein-protein
interactions of the yeast, S. cerevisiae [87]. The biological functions or pro-
tein complexes that can be associated with the communities shown in the
left panel were looked up by using the GO-TermFinder package [16] and the
online tools of the Saccharomyces Genome Database [20].

It is well known (see e.g. [5, 3, 51]) that the nodes of large real networks
have a power law degree distribution. Studies of various complex systems
showed that if we consider the network of communities instead of the nodes
themselves, we still observe a degree distribution with a fat tail, but a char-
acteristic scale is introduced, below which the distribution is exponential
[64]. This is in agreement with our understanding of a complex system
having different levels of organisation with units specific to each level. In
addition, in the present case the principle of organisation (scaling) is pre-
served (with some specific modifications) when going to the next level in
the hierarchy.

In a wide range of graph models the basic mechanism behind the emerg-
ing power law degree distribution is that new nodes appearing in the system
attach to the “old” ones with a probability proportional to their degrees
[5, 3, 51]. Furthermore, the occurrence of preferential attachment was di-
rectly demonstrated in several real-world networks with scale free degree
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Fig. 8. The community graph at k = 4 for the PPI network of S. cerevisiae obtained
from the DIP core list. The area of a node and the width of an edges are proportional to

the size of the corresponding community (number of members) and to the size of the
overlap (number of shared nodes), respectively. The coloured communities are cut out

and magnified to reveal their internal structure in the left panel. In this magnified
picture the nodes and edges of the original network have the same colour as their

communities, those that are shared by more than one community are emphasised in red,
and the grey edges are not part of these communities. The area of a node and the width
of an edge are proportional to the total numberof communities they belong to. Figure

from [64].

distribution [6, 43, 53]. In the study of the community structure in a scien-
tific co-authorship network it has been shown that similar processes control
the growth of communities and the development of the community graph
as well [68].

5.2.2. Molecular biological networks. Over the past decade in biology,
especially in Bioinformatics and Systems Biology, the network approach has
become very popular and successful [40, 7, 10, 50, 90, 2]. The CPM (together
with its free software implementation, CFinder [65, 1], capable of detecting
and visualising k-clique percolation clusters) provides a flexible and handy
tool for identifying modules in such graphs. In Sect. 5.2.1. we demonstrated
the concept of community graphs with the help of a biological example, the
PPI network of yeast. The communities detected with the CPM in such
networks can be associated mostly with either protein complexes or certain
functions [64, 1, 88]. For some proteins no function is available yet. Thus,
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the fact that they show up as members of communities can be interpreted
as a prediction for their functions.

Moreover, Jonsson et. al. used the CPM to validate the reliability of
the connections in a PPI network [45]. The available direct experimental
data concerning protein-protein interactions is not equally broad for the
different species. Thus, in some cases the construction of the PPI network
is based on other methods, too, for example, homology (DNA sequence
similarity) between the proteins. The weight of an edge, A-B, in the
PPI network is obtained by integrating (e.g. summing) the weights from
several sources of evidence: experimentally measured physical interactions,
homology and many others. Each experimental and prediction technique
can identify different groups of interactions with high efficiency, therefore,
to find the largest possible portion of the “real” biological list of interactions
it is necessary to integrate data from a large number of sources. The scoring
function used to calculate the edge weights in the integrated network can
be validated in a number of ways; one is based on the assumption that
interactions within densely linked communities are more acceptable than
interactions between communities, i.e. a higher score is expected for intra-
community connections. This assumption was confirmed by Jonsson et. al.
in a study of the rat proteome, where edges inside the CPM communities
were observed to be significantly stronger than edges connecting nodes in
different communities [45].

In the example above one major goal was the automatic identification
of protein communities involved in cancer metastasis. In metastasis (a
cellular state) cancer cells have the ability to break away from the primary
tumour and move to different organs, making the cancer more difficult to
treat. Little is known about the molecular biology of metastasis, but it
is now broadly accepted that these cells have an increased motility and
invasiveness. These novel behaviours involve protein-protein interactions
which have to be identified and characterised if an effective treatment is to
be developed. The main results of [45] showed that the CPM can help to
identify key protein communities involved in cancer metastasis.

A closely related study by Jonsson and Bates was aimed at the inves-
tigation of the topological properties of cancer proteins (proteins closely
related to the development of cancer) as nodes of the human PPI net-
work [44]. The community structure was examined with the help of the
CPM, and the results showed that (among various other topological dif-
ferences between cancer- and non-cancer proteins) cancer proteins appear
in community overlaps more frequently than predicted from their overall
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ratio amongst all proteins. Since communities usually represent different
cellular processes, proteins in the overlaps may be participating in multiple
processes, and can be considered to be at the “interface” of distinct but ad-
jacent cellular processes. Therefore, cancer proteins seem to be mediators
between different pathways. In one of the examples presented by Jonsson
and Bates, four communities were tied together by cancer proteins with
functions ranging from signal transduction to the regulation of cell growth
and cell death. Furthermore, the ratio of cancer proteins in the communi-
ties was increasing with k, and cancer proteins seemed to take part in larger
communities. A plausible explanation of this effect is that cancer proteins
participate in more complex cellular processes. It is also conceivable that
the larger communities correspond to larger or more complicated cellular
machineries, where cancer proteins play a role [44].

A cancer-related investigation using CPM was carried out recently by
Finocchiaro et. al. in [28] as well. In this case the network was constructed
from gene expression data: groups of up to 10 genes with significant co-
expression were fully connected. The communities in the resulting network
were extracted using several methods (including CPM), and according to
the results, the identified communities were enriched with genes responsi-
ble for the regulation of the cell cycle, apoptosis, phosphorylation cascades,
extracellular matrix, immune and interferon response regulation. For the
majority of communities, promoter searches for enriched cis-regulatory mod-
ules support the conclusion that the communities identified here reflect bi-
ologically relevant sets of co-regulated genes whose expression is altered in
human cancer. As such, the identified communities may provide marker
genes useful for clinical applications as well as hitherto unknown regulators
of cancer signalling pathways that may constitute novel entry points for
pharmacological intervention.

5.2.3. Social networks. The CPM was successfully applied to various
networks related to the social contacts between people as well. The study
of social networks has a long history; in its early period sociologist used
questionnaires and personal interviews to reveal the graph of social ties.
The spectrum of social interactions that can be probed in this approach is
very wide, however, the size of the sample that can be examined in this way
is rather limited. Nowadays, due to the rapid developments in computer
technology, new possibilities opened up for the exploration of social ties,
enabling the construction of networks on a much larger scale. A prominent
example of this is given in [60, 61], where a network consisting of more than
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4·106 customers of a mobile phone company is analysed (the edges represent
mutual calls between the people).

The community structure of this system was analysed with the help of
CPM in [63], and according to the results, the majority of the found com-
munities contained individuals living in the same neighbourhood, and with
comparable age, a homogeneity that supports the validity of the uncovered
community structure. Interestingly, the time evolution of the small com-
munities (e.g. a smaller collaborative or friendship circles) and the large
communities (e.g. institutions) showed major differences. At the heart of
small cliques were a few strong relationships, and as long as these persisted,
the community around them was stable. It appeared to be almost impossi-
ble to maintain this strategy for large communities, however. In contrast,
the condition for stability for large communities was continuous changes in
their membership, allowing for the possibility that after some time practi-
cally all members are exchanged. Such loose, rapidly changing communities
are reminiscent of institutions, that can continue to exist even after all
members have been replaced by new ones. For example, in a few years
most members of a school or a company could change, yet the school and
the company will be detectable as a distinct community at any time step
throughout its existence. This effect was observed in the community evolu-
tion of a co-authorship network as well [63]. (The edges between co-authors
in this case corresponded to articles published together).

Another interesting study of social networks was given in [34] by
González et. al., investigating the community structure and ethnic pref-
erences in high schools. The friendship networks between the students for
84 schools were constructed from the Add Health database [82], and the
communities were extracted using the CPM. The communities at k = 3
covered the majority of the students in most of the schools, and the corre-
sponding community graphs showed complex, richly interconnected struc-
tures. In contrast, at k = 4 the community graphs became rather sparse,
and the involved communities covered less than 20% of the students. At
the same time, the number of communities belonging to the different eth-
nic groups became balanced even for cases when the ratio of the sizes of
the ethnic groups was far from unity (and, correspondingly, on the level of
less cohesive groups, e.g. for k = 3, the students who were in majority, had
much larger friendship circles). A plausible explanation of this effect is that
when in minority, the students tend to form stronger ties, thus, the num-
ber of more densely interconnected communities becomes over-represented
compared to what happens in the k = 3 case [34].
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Fig. 9. Different network properties averaged over the community graphs (circles) and
the underlying networks of students (squares) in the studied schools. (a) The cumulative
degree distribution P (d). (b) The average clustering coefficient C (the fraction of edges
between the nearest neighbours of a vertex compared to the number of edges that could
possibly exist between them) in function of the vertex degree d. (c) The average degree
of the nearest neighbours in function of the degree. Note that the base network shows
assortativity (increasing tendency at low degrees), whereas the community graph is

disassortative. Figure from [34].

The other important result in this study connected to the CPM is
that the graph of communities turned out to be disassortative in spite of
the fact that the underlying network of friendship showed assortativity, as
demonstrated in Fig. 9c. (A network is said to be assortative if the average
degree of the nearest neighbours is increasing with the node degree, i.e.
high degree nodes “like” to connect to high degree nodes, and disassortative
in the opposite case). This is another indication of the differences in the
interactions at different levels in the hierarchy of a complex system.

The results in [60, 61, 34] (described partly in this section) also inspired
a couple of new models for the development of social networks [81, 48, 35].
In the works of Toivonen et. al. [81] and Kumpula et. al. [48], the empha-
sis is on the balance between two different type of attachment mechanisms:
cyclic closure and focal closure. The first one corresponds to the formation
of new ties or the enhancement of the strength of existing ties within an
already densely connected neighbourhood (i.e. two people who have many
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common acquaintances will get to know each other as well sooner or later).
The second one refers to the formation of ties independently of the geodesic
distance and is attributed to shared activities (hobbies, etc.). By changing
the relative strength of the two types of attachment mechanisms, the form-
ing network undergoes a transition from a homogeneous state (where the
majority of the edges were formed by focal closure) to an inhomogeneous
state with apparent, dense communities (in which the edges result mostly
from cyclic closure). This transition, and the appearing communities were
studied with the help of the CPM [81, 48]. According to the results, by
adequately balancing the two types of attachment mechanisms, the statisti-
cal properties of the model network match the mobile-phone network in all
studied aspects.

In [35] González et. al. introduced a network model based on colliding
(finite sized) particles travelling in a finite cell with periodic boundary con-
ditions. Each collision results in a new edge between the involved particles,
and the updating of the velocities depend on the degree of the particles.
With suitably chosen collision rules and aging scheme (particles die after a
certain amount of time) the quasi-stationary states of the resulting network
reproduce accurately the main statistical and topological features (e.g. the
community size distribution for communities obtained by CPM) of the high
school friendship networks mentioned earlier.

We close the overview of the CPM related results in social networks by
mentioning the study of the collaboration network among rappers by Smith
in [77]. The edges in this network correspond to co-appearance as artists
in lyrics obtained from several sources. The community structure of the
resulting graph was analysed with several methods including the CPM.

5.2.4. Further results. Finally, we collect a few other results related to the
CPM ranging from the investigation of economical networks to the graph
of certain webpages. In [41] a subset of the New York Stock Exchange
was analysed by Heimo et. al. with both spectral methods and the asset
graph method. In the latter case, the asset graph was constructed from the
correlation matrix of the stocks: the edges represent correlations stronger
than a certain threshold. The emerging graph was studied with the help of
the CPM. The results show that the first few eigenvectors of the correlation
matrix are localised on the communities, however their borders are fuzzy and
do not define clear cluster boundaries. With increasing eigenvector index
(the eigenvectors are ordered according to the corresponding eigenvalue),
the eigenvectors appear to localise increasingly less regularly with respect



34 G. Palla, D. Ábel, I. J. Farkas, P. Pollner, I. Derényi and T. Vicsek

to the asset graph topology. Therefore it appears that identifying the
strongly interacting clusters of stocks solely based on spectral properties of
the correlation matrix is rather difficult; the asset graph method (coupled
with the CPM) seems to provide more coherent results.

Gao and Wong applied the CPM to document clustering in [30]. The
graph of the documents was constructed using document similarity (more
similar documents are connected by a stronger edge). According to the
results, the communities obtained via the CPM can outperform some typical
algorithms on benchmark data sets, and shed light on natural document
clustering.

An interesting application of the CPM is shown by Castelló et. al. in the
study of the dynamics of competing opinions [19]. In the voter model, the
state of the agents can be either A or B [42], whereas in the AB model a
third, intermediate AB state is included as well [18]. The network of voters
is constructed with the help of a variation of the social network models
based on the balance between cyclic closure and focal closure [81, 48],
briefly discussed in Sect. 5.2.3. At each time step, the state (opinion) of
a randomly selected agent is changed with a probability depending on the
states of its neighbours. Starting from a random initial opinion distribution,
in both models the system converges to consensus, where all nodes are in the
same state. However, in the AB model the average time needed to reach
the ordered state is highly dependent on the structure of the underlying
network. According to the results of Castelló et. al., when a rich, apparent
community structure can be detected with the help of the CPM, the lifetime
distribution of the meta-stable (disordered) states becomes a power-law,
so that the mean lifetime is not representative of the dynamics. These
trapped meta-stable states, which can order at all time scales, originate in
the mesoscopic network structure.

Finally, we mention the comparative analysis of the directed communi-
ties in Google’s own webpages (the links follow the direction of the hyper-
links), a word association network (the directions of the links indicate that
people in the survey associated the end point of the link with its start point),
a university e-mail network (the links point from the sender to the recip-
ient), and a transcriptional regulatory network (the links point from the
regulating protein to the protein of the regulated gene) in [67]. The iden-
tified directed modules were inherently overlapping and the investigated
networks could be classified into two major groups in terms of the over-
laps between the modules. In the word association network and Google’s
webpages overlaps were likely to contain in-hubs, whereas the modules in
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the email and transcriptional regulatory networks tended to overlap via out-
hubs. In other words, in these two major classes of directed graphs, directed
modules “point” towards and away from their shared regions.
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[38] R. Guimerà, M. Sales-Pardo and L. A. N. Amaral, Module identification in bipartite
and directed networks, Phys. Rev. E., 76 (2007), 036102.

[39] U. Guldener, M. Munsterkotter, G. Kastenmuller, N. Strack and J. van Helden,
CYGD: the Comprehensive Yeast Genome Database, Nucl. Ac. Res., 33 (2005),
D364–D368.

[40] L. H. Hartwell, J. J. Hopfield, S. Leibler and A. W. Murray, From molecular to
modular cell Biology, Nature, 402 (1999), 6761, supplement C47–C52.
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Derényi and Tamás Vicsek

Department of Biological Physics
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